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Preface

Trigonometry is a sore spot for many students. Not only are the
topics hard, but STEM majors see them come up again and again
in their classes. This book is here to help!

Most trigonometry texts are either extremely expensive, shallow,
or old and not well suited for current STEM curricula. My goal is
to offer something that fills the hole. This book costs less than a
third the price of the average trigonometry textbook. It’s modern.
And it covers concepts in a detailed and rigorous way.

I have designed this book for STEM majors studying trigonometry.
In particular, it is designed so that students going into calculus
and physics will have the prerequisite knowledge to do well. The
trigonometric identities needed for calculus are emphasized. There
is a thorough treatment of polar coordinates. Vectors are addressed
and this includes treatment of the dot product. There are several
applications of vectors, such as force and work problems, which will
be helpful in physics. The material covered is sufficiently robust
that it can also be used as a reference.

This book covers trigonometry from a more geometric perspec-
tive. The geometric prerequisites aren’t just covered–they’re em-
phasized. This is helpful for a variety of reasons.

First, students often forget many of the ideas from geometry. This
hinders their performance in trigonometry. Students without much
knowledge of geometry frequently lack the vocabulary to describe
geometric objects and principles, which is a handicap to build-
ing further upon those ideas. Students are also hindered more
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concretely in the sense that a solid understanding of angles and
triangles is essential when working with trigonometric functions.

Second, geometry and trigonometry are highly complementary top-
ics and they provide a much richer experience when studied to-
gether. For example, a study of regular polygons is common prac-
tice within geometry. This task is simplified by a few area formulas
from trigonometry.

Third, a geometric underpinning of trigonometry provides a sounder
theoretical framework on which to develop trigonometry. We don’t
go deeply into geometric postulates, due to space and time con-
straints, but the text—at very least—takes the reader far enough
back into geometry that they would be able trace the ideas used
in trigonometry to geometric first principles if they had a solid
understanding of the axioms.

Fourth, the introduction of geometry provides students a frame-
work on which to categorize ideas. For example, the triangle con-
gruence postulates and theorems provide a means to determine
when a given set of information is sufficient to determine unique-
ness. This categorization is very helpful when trigonometry is im-
plemented to solve oblique triangles.

My background in education has been tutoring, not lecturing. Though
some may balk at the notion of a tutor producing a trigonometry
text instead of a professor, I believe that there are unique advan-
tages that tutors have over professors. In particular, tutors get
immediate feedback from students. Students may or may not ask
a professor a question during lecture, and even when a student
does it is difficult for them to articulate what they do not under-
stand and it is not feasible for a professor to watch a student work
out a few problems so the professor can see where the student is
struggling. Furthermore, tutors have exposure to a wider range
of textbooks. They can see first-hand what material students find
most helpful.

Let me highlight a few of the insights gained from tutoring and
explain how they influenced this book.

• Students learn more easily when they are first introduced to
ideas within a concrete setting as opposed to an abstract one.
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Frequently, textbooks are written so abstractly that students
do not even look at them for help. For most students, a gen-
eral understanding of ideas must be built slowly by means of
analyses of specific cases. This book utilizes this insight and
emphasizes examples as a result. Abstract ideas are covered,
but new ideas are always reiterated more concretely.

• Students solve problems based on core ideas and mathemati-
cal reasoning. This book solves problems the same way. This
is in contrast to math texts’ typical approach which heavily
relies on formulas. For example, this book only uses one for-
mulation of the Law of Cosines, regardless of whether a side
length or an angle measure is found. Most books provide a
formulation for sides and another for angles. This makes solv-
ing the problems computationally easier, but almost all stu-
dents forget all but one formulation which completely voids
the approach.

• Students need to solve problems to learn mathematics. There
is no substitute for problem-solving. More than enough exer-
cises are included to obtain mastery of the material. Further-
more, the exercises range from easy to extremely challenging,
so this book will be helpful to trigonometry students at many
skill levels.

A few further comments: If you find errors or you think that
part of the text is poorly formulated or written, please email me
at charles.tutoring@gmail.com. Help from students really im-
proved my previous bookGRE Mathematics Subject Test Solutions:
Exams GR1268, GR0568, and GR9768. Consider contacting me
for tutoring if you live in North San Diego County; my website is
rambotutoring.com. Please like Rambo Tutoring on Facebook.

Thank you so much for checking out my Trigonometry book. I
hope you find it informative, useful, and fun.

Charles Rambo
Escondido, California
October 2017
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Chapter 1

Angles

Angles are a fundamental aspect of trigonometry. Some knowl-
edge of lines, rays, and line segments is required to obtain a full
understanding of angles.

Symbol Name Description

←→
XY Line The figure within a plane which contains

the points X and Y , extends infinity in
both directions, and does not bend. We
often refer to lines using lowercase letters
as well, e.g. ℓ, m, or n.

−→
XY Ray The portion of line

←→
XY which has end-

point X and extends infinitely in the di-
rection of Y .

XY Line segment The portion of line
←→
XY contained within

points X and Y . The length of XY is
denoted XY .

This chapter assumes basic algebra skills. You will need to solve
linear, quadratic, and rational expressions. There will be com-
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putations within this chapter, but they can be solved without a
calculator.

1.1 Classification of Angles

Definition 1.1 Two rays which meet at a common endpoint form
an angle. The common endpoint is called the vertex of the
angle.

•

•
•

A

B

C

θ

There are several ways to denote the angle in the
figure:

• ∠B,

• ∠ABC,

• ∠CBA, or

• using a Greek letter, in this case θ.

Sometimes using one point to reference an angle
is ambiguous. For example, it is not clear where
∠E is in the figure below. Is it ∠DEG, ∠DEF , or ∠FEG? There
is no way to know.

•

•

•

•
E

D

F

G

When we reference an angle, we are referring to a figure. However,
it is helpful to quantify angles based on how much they open up.

Definition 1.2 An angle measure is the number which quantifies
how much an angle opens up. A protractor is used to obtain angle
measures.

Within this chapter, we will quantify angle measures using degree
units. In Chapter 3, we will introduce another unit of angle mea-
sure, called radians.
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To indicate the measure of ∠A, we write m∠A. When we use a
Greek letter to denote an angle, we will be sloppy and simply use
an equals sign to indicate measure, e.g. if angle φ has measure 20◦,
we write φ = 20◦.

Definition 1.3 Two angles of the same measure are congruent.

We write ∠X ∼= ∠Y to indicate that ∠X and ∠Y are congruent.

Definition 1.4

• An acute angle has a measure between 0 and 90◦. That is,
∠W is acute if 0 < m∠W < 90◦.

• A right angle has a measure of exactly 90◦. That is, ∠X is
right if m∠X = 90◦.

• An obtuse angle has a measure strictly between 90◦ and
180◦. That is, ∠Y is obtuse if 90◦ < m∠Y < 180◦.

• A straight angle has a measure of exactly 180◦. That is,
∠Z is straight if m∠Z = 180◦.

•
W

∠W is acute

•
X

∠X is right

Y
•

∠Y is obtuse

•
Z

∠Z is straight

3



• • • •

•

Q R S T

U

Example 1.1 Classify (a) ∠QRS, (b) ∠QRU , (c) ∠SRU , (d)
∠RUS, (e) ∠USR, and (f) ∠UST as acute, right, or straight.

Solution

(a) ∠QRS is straight.

(b) ∠QRU is right.

(c) ∠SRU is right.

(d) ∠RUS is acute.

(e) ∠USR is acute.

(f) ∠UST is obtuse. ■

Definition 1.5

• When the sum of two angle measures is 90◦, we say the angles
are complementary.

• When the sum of two angle measures is 180◦, we say the
angles are supplementary.

Sometimes the complement or supplement of an angle is a nonsen-
sical concept. For example, the complement of an angle of measure
100◦ is nonsensical because 100◦ is larger than 90◦. The supplement
of an angle of measure 190◦ does not make sense either, because
190◦ is larger than 180◦.

Example 1.2 What is the measure of an angle complementary to
angle θ, if θ = 72◦?

Solution An angle complementary to θ has measure

90◦ − 72◦ = 18◦.
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■

Example 1.3 Suppose ∠T and ∠U are supplementary,

m∠T = 4x− 18◦ and m∠U = 57◦ − x.

Find m∠T and m∠U .

Solution Since ∠T and ∠U are supplementary,

m∠T +m∠U = 180◦ implies 4x− 18◦ + 57◦ − x = 180◦.

From here, a bit of algebra shows x = 47◦. Hence,

m∠T = 4(47◦)− 18◦ = 170◦ and m∠U = 57◦ − 47◦ = 10◦.

■

1.2 Adjacent Angles

Definition 1.6 Two angles are adjacent when

• they share a vertex,

• they share a common side, and

• they are non-overlapping.

α
β

Angles α and β in the figure above are adjacent. Let us take a look
at cases where one of the three criteria fails.

5



α

β

(a)

α
β

(b)

α β

(c)

There are no adjacent angles in the three figures. In diagram (a),
angles α and β are not adjacent because they do not share a com-
mon vertex. In (b), angles α and β are not adjacent because they
do not share a common side. And in (c), α and β are not adjacent
because angle β overlaps angle α.

A
B

CD

•
•

••

Postulate 1.1 (Angle Addition) The sum of the measures of
adjacent angles is equal to the measure of the angle formed by the
non-common rays of the adjacent angles. In the diagram above,
this means

m∠ADC = m∠ADB +m∠BDC.

W
X

Y

Z

•
•

•

•

Example 1.4 Supposem∠XY Z = 2t+10◦, m∠WYX = 180◦−3t,
and m∠WY Z = 3t/2− 2◦. Find the measure of each angle.
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Solution Due to the Angle Addition Postulate,

m∠WYX +m∠WY Z = m∠XY Z.

So,

180◦ − 3t+
3t

2
− 2◦ = 2t+ 10◦ implies t = 48◦.

Hence,

m∠WY Z = 180◦−3(48◦) = 36◦, m∠WY Z =
3(48◦)

2
−2◦ = 70◦,

and
m∠XY Z = 2(48◦) + 10◦ = 106◦.

■

Definition 1.7 When the non-common sides of two adjacent angles
form a straight angle, then the angles are a linear pair.

In the figure below, ∠ABD and ∠CBD are a linear pair.

A B C

D

• • •
•

Example 1.5 Suppose ∠QRS and ∠SRT are a linear pair. If
m∠QRS = 87◦, find m∠SRT .

Solution Since the non-common sides of linear pairs form a straight
angle, linear pairs are supplementary. It follows that

m∠SRT = 180◦ −m∠QRS = 93◦.

■
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1.3 Vertical Angles

Definition 1.8 Vertical angles are angles on opposite sides of
intersecting lines.

••

• •

•

KL

M N

O

In the diagram, there are two linear pairs. One linear pair is

∠KON and ∠LOM,

and the other is
∠KOL and ∠NOM.

Proposition 1.1 Vertical angles are congruent.

Proof We will show that ∠LOM has the same measure as ∠KON .
Suppose m∠LOM = x. Then m∠LOK = 180◦ − x, because
∠LOM and ∠LOK are a linear pair. Since ∠LOK and ∠KON
are a linear pair as well,

m∠KON = 180◦ − (180◦ − x) = x.

We conclude
∠LOM ∼= ∠KON

■

α β

Example 1.6 Suppose α = 3y − 15◦ and β = 75◦ − 2y. Find y.
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Solution Because α and β are vertical angles,

α = β implies 3y − 15◦ = 75◦ − 2y.

After a bit of algebra, we find that y = 18◦. ■

1.4 Parallel, Perpendicular, and Transver-
sal Lines

Definition 1.9 Geometric objects are coplanar when they are
contained within the same plane.

In this section, we are interested in coplanar lines.

ℓ1

ℓ2

In the figure to the left, lines ℓ1 and
ℓ2 are coplanar. It is impossible to
draw a non-coplanar line on a page, be-
cause the page itself is contained within
a plane. However, an example of a
line non-coplanar to ℓ1 and ℓ2 is one
that goes out of the page toward you.

Definition 1.10 Parallel lines are coplanar lines which do not
intersect.

In two dimensions lines are either parallel or they intersect at some
location.

m n

In the diagram to the right, lines m and
n are parallel. The arrow within each line
indicates that this is the case.

As is visible from the diagram, lines m
and n are a fixed distance apart. This is
always the case for parallel lines.

We write m ∥ n to indicate that m and n are parallel. Notice that
m ∥ n if and only if n ∥ m. Furthermore, m ∥ n and n ∥ p implies
m ∥ p as long as m and p are unique lines.

9



Definition 1.11 Two lines are perpendicular or orthogonal if
they intersect at a right angle.

r

s

To indicate lines r and s are perpendicular, we use the notation
r ⊥ s. Notice r ⊥ s is true if and only if s ⊥ r is true.

1.4.1 Transversals

Definition 1.12 A line that intersects two coplanar lines at dis-
tinct points is called a transversal.

transversal

u

v

t

Suppose t is a transversal of u and v, as depicted in the diagram
above. The area between u and v is the “interior”. The area
outside of u and v is the “exterior”. Angles on the same side of the
transversal are called “same-side angles”. Angles on the opposite
side the transversal are called “alternate angles”. “Corresponding
angles” are angles on the same side of the transversal, but one angle
is interior and the other is exterior (sliding one line on top of the
other would cause the angles to overlap).

10



α2

β4

α1

α3 α4

β1 β2

β3

Corresponding angles
α1 and β1

α2 and β2

α3 and β3

α4 and β4

Alternate exterior angles
α1 and β4

α2 and β3

Alternate interior angles
α3 and β2

α4 and β1

Same-side exterior angles
α1 and β3

α2 and β4

Same-side interior angles
α3 and β1

α4 and β2

Postulate 1.2 (Corresponding Angles) Corresponding angles
are congruent, when the transversal intersects two parallel lines.

Proposition 1.2 Suppose a transversal intersects two parallel lines.
Then each of the following hold:

(i) Alternate exterior angles are congruent.

(ii) Alternate interior angles are congruent.

(iii) Same-side exterior angles are supplementary.

(iv) Same-side interior angles are supplementary.

Proof We will prove (i) and (iii) and leave the rest as an Exercise.
Consider the diagram on the previous page.

(i) We will show α1 = β4. Proving α2 = β3 is nearly identi-
cal. We know α1 = β1 because of the Corresponding Angles
Postulate. Because β1 and β4 are vertical angles, β1 = β4.
Therefore, α1 = β4.

(iii) We will show α1+β3 = 180◦. Proving α2+β4 = 180◦ is nearly
identical. We know α1 = β1 due to the Corresponding Angles

11



Postulate. Since β1 and β3 are a linear pair, β1 + β3 = 180◦.
Substituting α1 for β1, we conclude α1 + β3 = 180◦.

■

n

ℓ m

81◦ (a) (b) (c)

(d) (e) (f) (g)

Example 1.7 Suppose ℓ is parallel to m. Find the measures of
the labeled angles using the given information.

Solution

(a) The given angle and the angle in position (a) are a linear
pair, which implies that they are supplementary. Hence, the
angle in position (a) has measure

180◦ − 81◦ = 99◦.

(b) The given angle and the angle in position (b) are correspond-
ing angles. Thus, by the Corresponding Angles Postulate,
the measure of the angle in position (b) is also 81◦.

(c) The given angle and the angle in position (c) are same-side
exterior angles. This implies they are supplementary. There-
fore, the measure of the angle in position (c) is

180◦ − 81◦ = 99◦.

(d) The given angle and the angle in position (d) form a linear
pair. So, they are supplementary. Ergo, the angle in position
(d) has measure

180◦ − 81◦ = 99◦.

12



(e) The given angle and the angle in position (e) are vertical
angles. As a result, they are congruent. It follows that the
measure of the angle located at (e) is 81◦.

(f) We have not introduce a name for the relationship between
the given angle and the angle in position (f). However, the
angle in position (d) and (f) are corresponding angles. So, the
Corresponding Angles Postulate tells us that they are congru-
ent. We conclude that the angle in position (f) has measure
99◦ because that is the measure of the angle in position (d).

(g) The given angle and the angle in position (g) are alternate
exterior angles. It follows that they are congruent. We con-
clude that the angle in position (g) has measure 81◦. ■

A B

C

D

E

F
• •

•

•

•

•20◦

70◦

Example 1.8 Suppose BC is parallel to
←→
EF . Find the measure

of ∠CDE.

Solution Think of AC as the transversal of
←→
EF and BC. Because

∠BCA and ∠CDE are alternate interior angles, it follows that
m∠CDE = 70◦. ■

Postulate 1.3 (Converse of Corresponding Angles) Suppose
a transversal intersects two lines such that corresponding angles are
congruent. Then the two lines are parallel.

Proposition 1.3 Suppose two lines are intersected by a transver-
sal. They are parallel if any of the following is true.

(i) Alternate exterior angles are congruent.

(ii) Alternate interior angles are congruent.

(iii) Same-side exterior angles are supplementary.

13



(iv) Same-side interior angles are supplementary.

Proof We will prove (i) and leave the rest as an Exercise. Consider
the diagram below.

A
•

B
•

C•

D•

G•

H •

•

•

E

F

Suppose ∠BEG ∼= ∠CFH. We know ∠BEG ∼= ∠AEF because
the angles are vertical. So, ∠AEF ∼= ∠CFH, which means there is
a pair of congruent corresponding angles. Due to the Converse of

the Corresponding Angles Postulate,
←→
AB and

←→
CD are parallel. The

argument to prove ∠AEG ∼= ∠DFH implies that
←→
AB is parallel to

←→
CD is a nearly identical.

■

I J K

L

M

• • •

•

•

39◦

141◦

Example 1.9 Explain why JM is parallel to KL.

Solution If we consider IL as the transversal of JM and KL, then
∠JML and ∠KLI are same-side interior angles. Since ∠JML and
∠KLI are also supplementary, Proposition 1.3 (iv) tells us that JM
is parallel to KL. ■

14



1.5 Angles and Triangles

An angle formed by a vertex of a triangle and its adjacent sides
is called an “interior angle.” For example, the interior angles of
△ABC are

∠A, ∠B, and ∠C.

This section studies the interior angles of a triangle. In particular,
it explores relationships between interior angle measures.

•

•

•

A

B

C

Theorem 1.1 (Triangle Sum) The sum of the interior angle mea-
sures of a triangle is 180◦. That is, for any triangle △ABC,

m∠A+m∠B +m∠C = 180◦.

Proof Extend a line through A which is parallel to BC. Let D
and E be points on the line.

•

•

•

•
•

A

B

C

D

E

Because ∠CAD, ∠BAC, and ∠BAE collectively form a straight
angle, the Angle Addition Postulate tells us

m∠CAD +m∠BAC +m∠BAE = 180◦.

Due to Proposition 1.2 (ii), we know that m∠CAD = m∠C and
m∠BAE = m∠B. So, substitution leads us to conclude

m∠C +m∠BAC +m∠B = 180◦.

15



■

Example 1.10 Consider △QRS. Suppose m∠Q = 94◦ − 2t,
m∠R = 150◦ − 5t, and m∠S = 3t + 4◦. Find the measure of
each angle.

Solution Because of Theorem 1.1,

m∠Q+m∠R+m∠S = 180◦

⇒ 94◦ − 2t+ 150◦ − 5t+ 3t+ 4◦ = 180◦

⇒ 248◦ − 4t = 180◦

⇒ t = 17◦.

Hence,

m∠Q = 94◦ − 2(17◦) = 60◦, m∠R = 150◦ − 5(17◦) = 65◦,

and
m∠S = 3(17◦) + 4◦ = 55◦.

■

Theorem 1.2 (Isosceles Triangle) The angles of a triangle are
congruent if and only if the segments opposite have equal length.
Furthermore, the measure of an interior angle of a triangle is
greater than another if and only if the side opposite the larger angle
is longer than the one opposite the smaller.

• •

•

A B

C

For △ABC Theorem 1.2 translates to

∠A ∼= ∠B if and only if BC = AC,

and
m∠A > m∠B if and only BC > AC.

16



•

•••

•

T

UV

W

X

Example 1.11 Suppose TU is parallel to XW and VW has the
same length as V X. If m∠U = 76◦, what is the value of m∠X?

Solution Using UW as our transversal, ∠W and ∠U are alternate
interior angles. It follows that m∠W = m∠U = 76◦. Since VW =
V X, we know m∠X = m∠W = 76◦. ■

17



1.6 Exercises

•

•

•

•

•

•

•

A

B

C

D

E

F

G

Figure 1

* Exercise 1

Consider Figure 1. Suppose
−→
AD

is parallel to
−→
EG. Classify each

angle as either acute, right, ob-
tuse, or straight.

(a) ∠ABF

(b) ∠BCF

(c) ∠CFB

(d) ∠EFB

(e) ∠BCD

(f) ∠GFB

(g) ∠CFG

(h) ∠DCF

(i) ∠EFG

(j) ∠CFE

•

1

2

3

4

567

8

9

10

11 12

Figure 2

** Exercise 2

At the given times, find the mea-
sure of the angle between the
minute and hour hand of a clock
like the one shown in Figure 2.

(a) 3:00

(b) 6:00

(c) 1:00

(d) 2:00

(e) 10:00

(f) 5:30

(g) 7:45

(h) 11:55

* Exercise 3

Compute the complement and
supplement of each angle mea-
sure, whenever it makes sense.
When the complement or sup-
plement is nonsensical say so.

(a) 20◦

(b) 75◦

(c) 92◦

(d) 80◦

(e) 200◦

(f) 22.5◦

** Exercise 4

Suppose ∠C and ∠D are com-
plementary. Find x using the
given information.

(a)
m∠C = 3x− 17◦

m∠D = 123◦ − 5x

(b)
m∠C = (2x2 − 12x)◦

m∠D = (7x− 60)◦

18



(c) m∠C =
3x2

x+ 20◦
m∠D = 3x

** Exercise 5

Suppose ∠E and ∠F are supple-
mentary. Find y assuming the
following hold.

(a)
m∠E = 120◦ − 3y

4

m∠F =
9y

5
− 45◦

(b)
m∠E = (y2 − 10y + 150)◦

m∠F = (166− 15y)◦

(c)
m∠E =

90◦(y − 60)

y + 10
m∠F = (2y)◦

•

•

••

•G

H

IJ

K

Figure 3

** Exercise 6

Use Figure 3 to answer the fol-
lowing questions.

(a) If m∠GHJ = 30◦, what is
m∠IHK?

(b) Suppose m∠GHJ =
3t/2−25◦ and m∠IHK =
115◦ − t. Find t.

(c) Let m∠GHJ = u2 − 10u
and m∠IHK = 400◦ −
2u2. Find m∠GHK.

(d) What is v, when

m∠IHK =

(︃
30v + 30

2v − 2

)︃◦
and ∠IHJ =

(︃
90v + 30

v − 1

)︃◦
?

•

• •

••

•

O

A B

C

E

D

Figure 4

* Exercise 7

Consider Figure 4. Find w using
the given information.

(a) m∠AOE = 2w

(b)
m∠AOB = 2w − 5◦

m∠COD = 43◦ − w

(c)
m∠AOB =

(︁
6w2

)︁◦
m∠BOC = (30w + 36)

◦

(d)
m∠COD = (6w + 12)

◦

m∠DOE =

(︃
12w + 42

19− w

)︃◦
19



45◦

ℓ

m

n

Figure 5

* Exercise 8

In Figure 5, suppose ℓ and m are
parallel. Find the remaining an-
gles created by the transversal
n.

** Exercise 9

Consider Figure 1. Suppose
−→
AD

and
−→
EG are parallel. Assume

m∠BCF = 20◦. Find each of
the following.
(a) m∠DCF , (b) m∠CFG, and
(c) m∠BFC

x◦

y◦

Figure 6

** Exercise 10

Use Figure 6 and the given in-
formation to find the variable.

(a) If x◦ = 40◦, find y◦.

(b) What is x◦, when y◦ =
140◦?

** Exercise 11

Consider Proposition 1.2.

(a) Prove alternate interior
angles are congruent.

(b) Prove same-side interior
angles are supplementary.

30◦• •

•

•

••

•
•

A B

C

D

E

F

G
H

Figure 7

** Exercise 12

In Figure 7, find the angle mea-
sures listed.

(a) m∠C

(b) m∠EDF

(c) m∠DFE

(d) m∠GDH

(e) m∠CDG

(f) m∠DGH

20



** Exercise 13

Consider Proposition 1.3.

(a) Prove that congruent al-
ternate interior angles im-
plies the lines are parallel.

(b) Prove that supplementary
same-side exterior angles
implies the lines are par-
allel.

(c) Prove that supplementary
same-side interior angles
implies the lines are par-
allel.

** Exercise 14

Consider △IJK.

(a) Find m∠K when m∠I =
15◦ and m∠J = 52◦.

(b) Find m∠I when m∠J =
22◦ and ∠K is right.

(c) Suppose m∠I = m∠J =
m∠K. What is the mea-
sure of each angle?

(d) Find x, if m∠I = 3x −
16◦, m∠J = 76◦ − x, and
m∠K = 10x.

(e) Let m∠I = (y2 + 10y +
20)◦, m∠J = (2y2+100)◦,
and m∠K = (50 − 3y)◦.
What is the value(s) of y?

(f) Find the possible value(s)
of z, when

m∠I =
120◦

z + 1
,

m∠J =
180◦

z + 1
,

and m∠K = 15◦(z + 4).

x◦

y◦

z◦

Figure 8

** Exercise 15

In Figure 8, find the remaining
variable.

(a) x = 50 and y = 34

(b) x = 35 and z = 100

(c) y = 24 and z = 120

** Exercise 16

Suppose x, y, and z are as shown
in figure 8. Prove

x◦ + y◦ = z◦.

62◦
•

••

•

••

A

BC

D

EF
Figure 9
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** Exercise 17

In Figure 9, BE = DE = DF .
Find the measure of ∠CFD.

E

I

G

F

H

Figure 10

** Exercise 18

Consider Figure 10. Assume
FH is parallel to EI.

(a) Let FG = GH and
m∠HFE = 130◦. Find
m∠I.

(b) Say that m∠E = 70◦

and EG = IG. What is
m∠GHF?

(c) Suppose m∠E = 45◦ and
m∠FHI = 135◦. Suppose
EG = 2t and GI = 18− t.
Find t.

•

•

•

•
A

B

C

D
Figure 11

** Exercise 19

Use Figure 11 to complete the
problems below. Note the dia-
gram is not necessarily drawn to
scale.

(a) Rank the interior angle
measures of △ABD from
least to greatest. Assume
AB = 2, AD = 4 and
BD = 3.

(b) Rank the interior angle
measures of △BCD from
least to greatest. Suppose
BD = 7, BC = 5, and
CD = 3.

(c) Let

m∠A = 50◦,
m∠ABD = 70◦,
m∠CBD = 11◦,

and m∠BDC = 45◦.

Rank the sides from least
length to greatest.
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Chapter 2

Triangles

In this chapter, we will study triangles. In particular, we provide
two ways of classifying triangles and we analyze key properties of
triangles. Readers will need a complete understanding of the prop-
erties of angles discussed in Chapter 1 as well as a proficient un-
derstanding of algebra. Ratios and radicals are utilized frequently,
so unfamiliar readers are advised to consult Appendices A and B.
Calculators are not necessary for this chapter.

2.1 Classification of Triangles

We will classify triangles two ways: By angles and by sides.

2.1.1 Classification by Angles

Definition 2.1

• An acute triangle has three acute interior angles.

• The interior angles of an equiangular triangle are congru-
ent.

• When one of the interior angles of a triangle is right, it is a
right triangle.

• An obtuse triangle has exactly one obtuse interior angle.

23



acute equiangular right obtuse

•

• •

•

Q

R
S

T
60◦

60◦

Example 2.1 Classify (a) △QRS, (b) △QST , and (c) △RST
according to their angle measures.

Solution

(a) Since ∠QSR is right, △QRS is a right triangle.

(b) Because the sum of the measures of the interior angles of a
triangle is 180◦,

m∠QST +m∠Q+m∠QTS = 180◦

⇒ m∠QST + 60◦ + 60◦ = 180◦

⇒ m∠QST = 60◦

Hence, all of the angles of △QST are congruent, so it must
be an equiangular triangle.

(c) Since ∠RTS and ∠QTS are a linear pair, they are supple-
mentary. It follows that

m∠RTS = 180◦ −m∠QTS implies m∠RTS = 120◦.

Because ∠RTS is an obtuse angle, △RST is an obtuse tri-
angle. ■

24



2.1.2 Classification by Sides

Definition 2.2

• Each side of a scalene triangle has a distinct length, i.e. no
two sides have equal lengths.

• An isosceles triangle has two sides of the same length.

• All three sides of an equilateral triangle have the same
length.

We have defined isosceles triangles so that all equilateral triangles
are isosceles. Some books say isosceles triangles have exactly two
sides of equal length. Our definition makes is easier to prove tri-
angles are isosceles; simply prove two sides have the same length.
The alternative definition would also require one to prove the third
side length is not equal to the others.

scalene isosceles equilateral
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•

•

• • U

V

W X 4

4
7

4

4

Example 2.2 Classify (a) △UV X, (b) △VWX, and △UVW by
means of their sides.

(a) Because all of the side lengths of △UV X are equal, it must
be an equilateral triangle.

(b) Two of the side lengths of△VWX are the same. So, △VWX
is an isosceles triangle.

(c) Since UW = 4 + 4 = 8, no two sides of △UVW have equal
length. Hence, it is a scalene triangle. ■

2.2 Congruent Triangles

Definition 2.3 Two triangles are congruent, if there is a cor-
respondence between the vertices of the two triangles such that
corresponding angles are congruent and corresponding sides have
the same length.

•

•

•
A

B

C

•

•

•

X

Y

Z

As usual for congruence statements,
the symbol ∼= is used to denote con-
gruent triangles. So,

△ABC ∼= △XY Z

if and only if

∠A ∼= ∠X BC = Y Z
∠B ∼= ∠Y AC = XZ
∠C ∼= ∠Z AB = XY.
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7
3.5

8
•

•

• L

M

N

26◦

93◦

61◦

Example 2.3 Suppose △LMN ∼= △OPQ. Find all the side
lengths and angle measures of △OPQ.

Solution Because △LMN ∼= △OPQ,

L ↔ O, M ↔ P, and N ↔ Q.

Hence,

m∠O = m∠L = 26◦, m∠P = m∠M = 93◦, m∠Q = m∠N = 61◦,

OP = LM = 7, OQ = LN = 8, and PQ = MN = 3.5.

■

The next few subsections examine sufficient criteria to prove con-
gruence between two triangles. This information is intrinsically
valuable and has been studied for centuries. However, we are par-
ticularly intersected in congruent triangles because of Chapter 9.

In Chapter 9, we will find the lengths and angle measures of trian-
gles using various givens. Our study of triangle congruence allows
us determine when enough information is provided to determine
uniqueness

2.2.1 SSS Postulate

Postulate 2.1 (Side-Side-Side Congruence Postulate, SSS)
Suppose there is a correspondence between the vertices of two tri-
angles such that corresponding sides have equal length. Then the
triangles are congruent.

27



•

•

• T

U

V

•
•

•

WX

Y

Using the SSS triangle congruence postulate, we conclude

△TUV ∼= △WXY.

•

•

•

•

U

V

W

X

20◦

130◦

Example 2.4 Write a congruence statement. Use it to determine
the unknown angle measures in each triangle.

Solution Because UV = UX, WV = WX, and UW = UW , SSS
tells us

△UVW ∼= △UXW.

This implies

m∠V = m∠X = 130◦ and m∠WUX = m∠WUV = 20◦.

Because the sum of the interior angle measures of a triangle is 180◦,

m∠V UW +m∠V +m∠UWV = 180◦ implies m∠UWV = 30◦.

Congruence of the two triangles leads us to conclude m∠UWX =
30◦ as well. ■
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2.2.2 SAS Postulate

Postulate 2.2 (Side-Angle-Side Congruence, SAS) Suppose
there is a correspondence between the vertices of two triangles such
that there are two pairs of equal length sides, and the angles between
the sides in each triangle are congruent. Then the two triangles are
congruent.

•

•

• A

B

C

•
•

•

FG

H

Using the SAS triangle congruence postulate, we conclude

△ABC ∼= △GFH.

•

•

•
•L

M

N
O

2

74◦

Example 2.5 SupposeMO is an angle bisector of ∠LMN ,m∠LMN =
60◦, and LM = NM . Make a congruence statement between the
two triangles. Find the length LO, and all the interior angles.

Solution We will prove △LMO ∼= △NMO using the SAS congru-
ence postulate. We are given LM = NM , it is clear MO = MO,
and ∠LMO ∼= ∠NMO due to the definition of a bisector. Hence,
△LMO ∼= △NMO due to SAS.
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Now we can use the congruence correspondence and the other
given information to find the needed lengths and angles. We know
LO = NO = 2. Because MO is an angle bisector, m∠LMO and
m∠NMO are both 60◦/2 = 30◦. To find m∠LOM , we will use
the fact that the sum of the interior angle measures of a triangle is
180◦. So,

m∠L+m∠LMO +m∠LOM = 180◦ implies m∠LOM = 76◦

It follows that m∠NOM = 76◦ as well, and

m∠LON = 2(76◦) = 152◦.

■

2.2.3 ASA Postulate

Postulate 2.3 (Angle-Side-Angle Congruence, ASA) Suppose
there is a correspondence between the vertices of two triangles such
that there are two pairs of congruent angles, and the lengths of the
sides between the two angles in each triangle are equal. Then the
two triangles are congruent.

•

•

•

Q

R

S •
•

•

T

U

V

Using the ASA triangle congruence postulate, we conclude

△QRS ∼= △TUV.
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•

•

•

•

Q

R

S

T

Example 2.6 Suppose QS is an angle bisector of ∠RQT and
∠RST . If RS = x + 7 and TS = 12 − 4x, what is the value
of x.

Solution SinceQS is an angle bisector of ∠RQT , we know ∠RQS ∼=
∠TQS. The same reasoning shows ∠QSR ∼= ∠QST . We have
QS = QS, because a segment is always equal to itself. Due to
ASA, we conclude △QRS ∼= △QTS.

Because corresponding sides of congruent triangles have equal length,
RS = TS. It follows that x + 7 = 12 − 4x. Then a bit of algebra
shows x = 1. ■

2.2.4 AAS and HL Theorems

Theorem 2.1 (Angle-Angle-Side, AAS) Suppose there is a cor-
respondence between the vertices of two triangles such that there
are two pairs of corresponding congruent angles and a pair of cor-
responding sides of equal length which are not contained between
the angles. Then the two triangles are congruent.

Proof This follows immediately from ASA. The sum of the mea-
sures of the interior angles of a triangle is 180◦, so two pairs of
corresponding angles being congruent implies the last pair of cor-
responding angles are congruent.

■
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H

I
J

•

• •

X

Y

Z

•

•

•

Using AAS, we conclude

△HIJ ∼= △XY Z.

•

•

•

•

•H

I

J

K

L

Example 2.7 Consider △HIJ and △JKL. Suppose ∠I ∼= ∠K,
and HI = LK. Prove J is the midpoint of HL.

Solution We know ∠HJI ∼= ∠LJK because they are vertical an-
gles. Since we are given ∠I ∼= ∠K and HI = LK, AAS tells us
△HIJ ∼= △LKJ .

Because corresponding sides of congruent triangles have equal lengths,
HJ = LJ . Ergo, J is the midpoint of HL. ■

Definition 2.4 Consider a right triangle.

• The side opposite the right angle is the hypotenuse.

• The other two sides of a right triangle are its legs.
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hypotenuse

legs

Because of the Isosceles Triangle Theorem (Theorem 1.2), we know
that the hypotenuse is always the longest side of a right triangle.

Theorem 2.2 (Hypotenuse-Leg, HL) Suppose two right trian-
gles have hypotenuses of equal length and one pair of legs of equal
length. Then the triangles are congruent.

Proof Suppose △ABC and △DEF are right with ∠C and ∠F
being the right angles of their respective triangles. Further, suppose
AB = DE and AC = DF , i.e. suppose the hypotenuses and a pair
of legs have equal lengths.

Consider line
←→
BC. Let G be the point on

←→
BC outside of △ABC

such that EF = CG.

•

••

D

F E

•

• • •

A

B C G

By assumption AC = DF . We know ∠ACG ∼= ∠F , because they
are both right. Furthermore, we constructed G so that CG = EF .
It follows that △AGC ∼= △DEF due to SAS.

Since AB = DE and DE = AG, we have AB = AG. It follows
that ∠ABC ∼= ∠AGC due to the the Isosceles Triangle Theorem
(Theorem 1.2). We know that ∠ACB ∼= ∠ACG, because both an-
gles are right. Clearly, AC = AC. Then AAS congruence theorem
leads us to conclude △ABC ∼= △AGC. Thus,

△ABC ∼= △AGC and △AGC ∼= △DEF

33



implies
△ABC ∼= △DEF.

■

••

•

•

A

C

B

D

Example 2.8 Suppose that AC = AD. Let ∠C and ∠D be right.
Prove that AB is an angle bisector of ∠CBD.

Solution Since AC = AD and AB = AB, HL tells us that
△ABC ∼= △ABD. It follows that ∠CBA ∼= ∠DBA. Hence, AB
is an angle bisector of ∠CBD. ■

2.3 Similar Triangles

Definition 2.5 Two triangles are similar, if there is a correspon-
dence between the vertices such that corresponding angles are con-
gruent and the ratios of corresponding side lengths are equal.

•

•

•
A

B

C
•

•

•
X

Y

Z
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The symbol ∼ denotes similarity. So, △ABC ∼ △XY Z if and
only if

∠A ∼= ∠X, ∠B ∼= ∠Y, ∠C ∼= ∠Z,

and
AB

XY
=

AC

XZ
=

BC

YX
.

Much like congruence statements, the order in which the vertices
are listed shows the correspondence.

Intuitively, when two triangles are similar, it means that they are
a scaled image of each other. One triangle can be converted into
the other by scaling the sides (scaling leaves angles unchanged).

Example 2.9 Suppose △LMN ∼ △OPQ. If LM = 5, OP = 10,
and MN = 15, find PQ.

Solution Since △LMN is similar to △OPQ, we know the ratios
of corresponding sides are equal. The similarity statement tells us
that LM corresponds to OP and MN corresponds to PQ. So,

LM

OP
=

MN

PQ
implies

5

10
=

15

PQ
.

Then some algebra shows that PQ = 30. ■

Postulate 2.4 (Angle-Angle Similarity, AA) Suppose there is
a correspondence between two triangles such that two pairs of corre-
sponding angles are congruent. Then the two triangles are similar.
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U

V

W

X

Y

•

•
•

•

•

Example 2.10 Assume UV is parallel to XY . Let WU = 12,
WX = 9, and WV = 16. Find WY .

Solution Because UV is parallel to XY , alternate interior angles
are congruent. It follows that ∠U ∼= ∠X and ∠V ∼= ∠Y .

Hence by the AA similarity postulate,

△UVW ∼ △XYW

It follows that

WY

WV
=

WX

WU
implies

WY

16
=

9

12
.

After a bit of algebra, we conclude WY = 12. ■

Theorem 2.3 (Side-Side-Side Similarity, SSS) Suppose there
is a correspondence between the vertices of two triangles such that
the ratios of corresponding side lengths are equal. Then the trian-
gles are similar.

•

•

•

•
•

A

B

C

D

E

4

8

3

63

9
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Example 2.11 Prove that AC is parallel to DE.

Solution We know

AB = 6 + 3 = 9 and BC = 4 + 8 = 12.

It follows that
BD

AB
=

BE

BC
=

DE

AC
=

1

3
.

Hence, △ABC ∼ △DBE due to the SSS similarity theorem. It
follows that

∠A ∼= ∠BDE and ∠C ∼= ∠BED

due to the definition of similarity.

By the Converse of Corresponding Angles Postulate, we know AC
is parallel to DE. ■

Theorem 2.4 (Side-Angle-Side Similarity, SAS) Suppose there
is a corresponds between the vertices of two triangles such that the
ratios of two pairs of corresponding side lengths are equal, and the
angles between the sides in each triangle are congruent. Then the
two triangles are similar.

A

B

C

•
•

•

X

Y

Z

•

•

•

For the triangles above, the SSS similarity postulate says

BC

Y Z
=

AC

XZ
and ∠C ∼= ∠Z,

allows us to conclude

△ABC ∼ △XY Z.
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•

•

•

•
•

Q

S

R

T

U

2t+ 2

t+ 1
t

3t− 2
2t

Example 2.12 Find QS in terms of t.

Solution Is clear

QR = t+ 1 + 2t+ 2 = 3t+ 3 and RS = t+ 2t = 3t.

Because
QR

TR
=

3t+ 3

t+ 1
= 3 and

RS

RU
=

3t

t
= 3,

the ratio of two pairs of corresponding sides is fixed. Furthermore,
the angles between the sides in each triangle are congruent due to
the fact that ∠R ∼= ∠R. Hence, the SAS similarity theorem tells
us

△QRS ∼ △TRU.

Thus,
QS

TU
= 3 implies

QS

3t− 2
= 3.

Solving for QS leads us to QS = 9t− 6. ■

2.4 Right Triangles

Consider a right triangle and the altitude perpendicular to its hy-
potenuse. The altitude creates two similar right triangles, due to
the AA similarity postulate. It also follows that the larger right
triangle is similar to both of the smaller ones, because of the AA
similarity postulate.
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Let us see why this is the case using △IJK.

• •

•

•

I J

K

L

Altitude IL creates △LJI and △LIK. Because the two acute
angles of a right triangle are complementary, a bit of thought leads
us to conclude

∠K ∼= ∠JIL and ∠J ∼= ∠LIK.

Then an application of the AA similarity postulate gives

△LJI ∼ △LIK ∼ △IJK.

• •

•

•
M N

O

P

Example 2.13 Consider △MNO. Suppose MN = 169, OP = 60,
and MO = 65. Find the remaining side lengths of the triangles.

Solution We know △MNO ∼ △MOP . It follows that

MN

MO
=

NO

OP
implies

169

65
=

NO

60
.

From here, a bit of easy algebra shows NO = 156. Furthermore,

MO

MN
=

MP

MO
implies

65

169
=

MP

65
.
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Then some algebra shows MP = 25.

It is clear

NP = MN −MP

= 169− 25

= 144.

■

Similar triangles are so powerful that even the Pythagorean Theo-
rem follows from them. Before we introduce the theorem and proof,
let us introduce a new convention.

Within a triangle, a lower case letter denotes the length
of the side opposite the vertex of the corresponding up-
percase letter.

For example, in △XY Z,

x = Y Z, y = XZ, and z = XY.

•

•

•
A

B

C

a

b

c

Theorem 2.5 (Pythagorean) Consider △ABC. Suppose ∠C is
the right angle. Then

a2 + b2 = c2.

Proof Let us draw the altitude from vertex C to BA. Let D be
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the point where it intersects BA. For convenience, say h = CD.

a

b

h

c

•

•

•

•

A

B

C

D

The idea behind this proof is to use the fact that

area of △CBD + area of △ACD = area of △ABC.

The area of △ABC is
ch

2
.

To find the area of △CBD, we will find BD. Because △ABC ∼
△CBD,

BD

BC
=

BC

BA
implies

BD

a
=

a

c
.

It follows that BD = a2/c. So, the area of △CBD is

a2h

2c
.

To find the area of △ACD, we will find AD. Since △ABC ∼
△ACD,

AD

AC
=

AC

AB
implies

AD

b
=

b

c
.

It follows that AD = b2/c. So, the area of △ACD is

b2h

2c
.

Using our area identity from before,

a2h

2c
+

b2h

2c
=

ch

2
.

Then multiplying by 2c/h yields

a2 + b2 = c2.
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■

q s

r

Example 2.14 Consider △QRS above. If q = t + 1, r = t + 8,
and s = t+ 9, what is the value of t?

Solution Using the Pythagorean Theorem,

q2 + r2 = s2 implies (t+ 1)2 + (t+ 8)2 = (t+ 9)2.

Hence,

t2 + 2t+ 1 + t2 + 16t+ 64 = t2 + 18t+ 81
⇒ 2t2 + 18t+ 65 = t2 + 18t+ 81
⇒ t2 = 16
⇒ t = ±4.

It is impossible for t to equal −4, because that would imply q equals
−4 + 1 = −3. We conclude that t = 4 is the only solution. ■

Proposition 2.1 (Converse of Pythagorean Theorem) Suppose
three sides of a triangle have lengths a, b, and c, where a ≤ b ≤ c.
Then the triangle is right if

a2 + b2 = c2.

Proof It is easy to construct a right triangle of side lengths a,
b, and c. Due to the SSS congruence postulate, this triangle is
congruent to any triangle of side lengths a, b, and c. This implies
that all triangle of this form are right, because corresponding angles
of congruent triangles are congruent.

■

Example 2.15 Determine whether a triangle of side lengths (a) 3,
4, and 5, and (b) a triangle of side lengths 5, 7, and 11 are right.

Solution
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(a) Because
32 + 42 = 25 = 52,

the corresponding triangle must be right.

(b) Since
52 + 72 = 74 ̸= 121 = 112,

there is no right triangle with the given side lengths.

■

2.5 Special Right Triangles

Proposition 2.2 (45◦ − 45◦ − 90◦ Special Right Triangle) A
triangle is a 45◦− 45◦− 90◦ special right triangle if and only if the
relationship between the sides and angles in the diagram holds for
some t > 0.

t
√
2

t

t

45◦

45◦

There are several ways to conclude that a right triangle is a 45◦ −
45◦ − 90◦ special right triangle. It suffices to know that the right
triangle has . . .

• . . . an angle of measure 45◦.

• . . . two legs of equal length.

• . . . a hypotenuse of length
√
2 times the length of a leg.

•

•

•
X

Y

Z

√
5
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Example 2.16 Suppose Y Z = Y Z. Find the remaining side
lengths.

Solution This is a 45◦− 45◦− 90◦ special right triangle because it
is a right triangle with two legs of equal length. Furthermore, we
see that the relationship between the sides described in Proposition
2.2 holds for t =

√
5. This implies z =

√
5 and

y =
√
5 ·

√
2 =

√
10.

■

•

•

•
M

N

L

16
45◦

Example 2.17 What are the remaining side lengths?

Solution Since this is a 45◦ − 45◦ − 90◦ special right triangle,
ℓ = 16 = t

√
2. This implies

t =
16√
2

=
16√
2
·
√
2√
2

=
16
√
2

2

= 8
√
2.

We conclude m = 8
√
2 and n = 8

√
2. ■
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Example 2.18 Suppose the radius of the large circle is 3, and the
shaded circles are radii of equal length. Find the total shaded area.

Solution Suppose the radius of each of the small circles is r. Let
us zoom in on the top left circle.

r

r
r
√
2

r

Since the two legs of the right triangle drawn are both r, it is a
45◦− 45◦− 90◦ special right triangle and its hypotenuse is r

√
2. It

follows that r + r
√
2 = 3. So,

r =
3

1 +
√
2

=
3

1 +
√
2
· 1−

√
2

1−
√
2

=
3(1−

√
2)

1− 2

= 3
√
2− 3.

45



It follows that the area of one shaded circle is

π(3
√
2− 3)2 = π(18− 18

√
2 + 9) = 9(3− 2

√
2)π.

Since the total area is four times the area of one shaded circle, we
conclude that the final answer is

36(3− 2
√
2)π.

■

Proposition 2.3 (30◦ − 60◦ − 90◦ Special Right Triangle) A
triangle is a 30◦− 60◦− 90◦ special right triangle if and only if the
relationship between the sides and angles in the diagram hold for
some t > 0.

2t

t
√
3

t

30◦

60◦

As was the case for 45◦−45◦−90◦ special right triangles, there are
several ways to conclude that a right triangle is a 30◦ − 60◦ − 90◦

special right triangle. It suffices to know that the right triangle . . .

• . . . has an interior angle of measure either 30◦ or 60◦.

• . . . is such that the ratio of the larger to smaller leg is
√
3.

• . . . is such that the ratio of a leg to the hypotenuse is either√
3/2 or 1/2.

•

••

P

QR
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Example 2.19 The right triangle in the figure above is not to scale.
Use the given information to find the missing sides and angles.

(a) p = 5 and m∠P = 30◦

(b) p = 2
√
3 and q = 6

(c) q = 7 and r = 14

Solution

(a) Since m∠P = 30◦, m∠R = 90◦ and

m∠P +m∠Q+m∠R = 180◦,

a bit of algebra shows m∠Q = 60◦. As such, we have a
30◦ − 60◦ − 90◦ special right triangle.

It follows that t = p = 5, which implies

q = 5
√
3 and r = 2(5) = 10.

(b) Since p = 2
√
3 and q = 6,

r2 = q2 + p2

= (6)2 +
(︂
2
√
3
)︂2

= 36 + 4(3)

= 48.

This implies

r =
√
48

=
√
16 · 3

=
√
16 ·

√
3

= 4
√
3.

Due to the relationship between the sides, Proposition 2.3
leads us to conclude m∠P = 30◦ and m∠Q = 60◦.

(c) Since p = 7 and r = 14,

r2 = q2 + p2 implies 142 = q2 + 72.
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A bit of algebra shows

q =
√
147

=
√
49 · 3

=
√
49 ·

√
3

= 7
√
3.

Proposition 2.3 tells us we have a 30◦−60◦−90◦ special right
triangle, where m∠P = 30◦ and m∠Q = 60◦.

■
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• •

• ••

A B

C DE

30◦
45◦

10

Example 2.20 Find AC in rectangle ABCD.

Solution For convenience, let y = AC. We know

CD = CE +DE and CD = 10.

Using special right triangles,

CE =
y√
3
=

y
√
3

3
and DE = BD = y.

It follows that

y +
y
√
3

3
= 10

⇒ 3y + y
√
3

3
= 10

⇒ y(3 +
√
3)

3
= 10

⇒ y =
30

3 +
√
3

=
30(3−

√
3)

9− 3
= 5(3−

√
3).

Hence,
AC = 5(3−

√
3).

■
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2.6 Exercises

•

•

• •
A

B

C D

27◦63◦

45◦

Figure 1

* Exercise 1

Consider Figure 1. Classify (a)
△ABC, (b) △ABD, and (c)
△BCD according to their inte-
rior angles.

•

•

•

•

E

F

G

H

Figure 2

* Exercise 2

Use Figure 2 and classify (a)
△EFG, (b) △EGH, and (c)
△FGH according to their inte-
rior angles.

** Exercise 3

Suppose △IJK is equiangular.
Find x when . . .

(a) . . .x is the measure of each
interior angle.

(b) . . .m∠I = (78− 2x)◦.

(c) . . .m∠J = (24x2−108x)◦.

(d) . . .m∠K =

(︃
10x− 5

x− 1

)︃◦
.

•

•

•

•

L

M

N

O

3
√
3

9

9

9

9

Figure 3

* Exercise 4

Consider Figure 3. Classify (a)
△LMN , (b) △LMO, and (c)
△OMN according to their side
lengths.
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* Exercise 5

Explain why a triangle is
equiangular if and only if it is
equilateral.

* Exercise 6

Why is it impossible for a trian-
gle to have more than one obtuse
interior angle?

* Exercise 7

Suppose △QRS ∼= △TUV .

(a) Which pairs of angles
must be congruent?

(b) Which pairs line segments
must have equal length?

•

•

•

•

V

W

X

Y
Figure 4

** Exercise 8

Write a congruence statement
based on Figure 4 and the given
information. Justify your con-
gruence statement with a theo-
rem or postulate.

(a) V X is an angle bisector of
∠WV Y and ∠WXY .

(b) VW = V Y and WX =
Y X.

(c) V X is an angle bisector of
∠WV Y and VW = V Y .

•

•

•

•

•
A

B

C

D

E

Figure 5

** Exercise 9

Find congruence statement us-
ing Figure 5 and the given in-
formation. Justify your congru-
ence statement with a theorem
or postulate.

(a) AB is parallel to DE and
AC = EC.

(b) AC = EC and BC = DC.

(c) ∠B ∼= ∠D and C is the
midpoint of AE.
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•

•

• •
F

G

H I

Figure 6

** Exercise 10

Write a congruence statement
based on Figure 6 and the given
information. Justify your con-
gruence statement with a theo-
rem or postulate.

(a) ∠FIG ∼= ∠HIG and
FG = HG.

(b) ∠FIG ∼= ∠HIG and
FI = HI.

(c) FI = HI and FG = HG.

(d) ∠FIG ∼= ∠HIG and
∠F ∼= ∠H.

*** Exercise 11

Side-side-angle, or SSA, does
not determine congruence be-
tween two triangles. Draw two
non-congruent triangles with
two pairs of equal side lengths
and a pair of congruent angles,
not included within the sides.

•

•

•

•

•

•

A

B

C

D

E

F

Figure 7

** Exercise 12

Consider Figure 7. Write a simi-
larity statement using the given
information. Justify your simi-
larity statement with its appro-
priate theorem or postulate.

(a) AC is parallel to DF

(b) AD is parallel to BC

(c)
DE

FE
=

AE

BE

(d)
AB

BE
=

BC

BF
=

AC

EF

** Exercise 13

Use Figure 7 to answer the fol-
lowing.

(a) Suppose BE = 6, EF =
4, BF = 8, AE = 5,
DE = 10/3. Find AD.

(b) Let AE = 1, CF = 1.2,
BE = 2, BF = 2.4, and
AC = 3. What is EF?

52



(c) Assume AD is parallel to
BC. If AD = 95, BF =
100, and BE = 120, then
what is the value of AE?

•

•

•

•

•
•

•
•

A

B

CE

F

D

G
H

Figure 8

** Exercise 14

Consider Figure 8. Suppose
AB = 2

√
34, AC = 10, BC = 6,

m∠A = 31◦, and BC is parallel
to EG.

(a) Find all the sides and an-
gles of △DEF if DE = 3.

(b) Find all the sides and an-
gles of △DGH if HD =
3.2.

Figure 9

•

••

•

••

I

M

JK

N

L

*** Exercise 15

In Figure 9, suppose IL = 5,
JK = 4, and KL = 2. Further,

suppose MN = w and NL = h.
Assume KJ is parallel to MN
and IL.

(a) Write h as a function of w.

(b) The area of a trapezoid is

h(b1 + b2)

2
,

where b1 and b2 are the
bases of the trapezoid and
h is the height. Write the
area of trapezoid IMNL
as a function of w.

(c) If JI =
√
5, write IM as a

function of w.

Hint: Use similar triangle tech-
niques to establish ratios.
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** Exercise 16

A woman stands x meters away
from a 2.5-meter lamp. If the
woman is 1.6 meters tall, write
the length of her shadow in
terms of x.

e

ba

d

f

c

Figure 10

*** Exercise 17

Let the variables be as shown in
Figure 10. Find the remaining
side lengths using the given in-
formation.

(a) a = 6 and b = 8

(b) c = 17 and d = 64/17

(c) e = 12 and f = 5

(d) c = 17 and f = 120/17

(e) a = 5 and d = 25/13

c

b

a

Figure 11

** Exercise 18

Consider Figure 11. Find the
missing side.

(a) a = 6 and b = 8

(b) b = 15 and c = 17

(c) a = 25 and c = 65

(d) a = 6 and b = 9

(e) b = 13 and c = 17

(f) a = 7 and c = 15

** Exercise 19

Use Figure 11 and the given in-
formation to find t.

(a) a = 8, b = t, and c = t+ 2

(b) a = t + 6, b = 2t + 6, and
c = 4t+ 3

(c) a = t, b = t + 1, and
c = 3t− 4

** Exercise 20
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Determine whether the given
side lengths could be the sides
of a right triangle.

(a) 10, 24, and 26

(b) 39, 52, and 65

(c) 32, 60, and 62

** Exercise 21

A Pythagorean Triple is an
ordered triplet of positive inte-
gers (a, b, c) such that

a2 + b2 = c2.

For example, (3, 4, 5) is a
Pythagorean Triple. Prove that
if (a, b, c) is a Pythagorean
Triple, then so is (ka, kb, kc) for
all positive integers k.

•

••

L

MN

n
m

ℓ

Figure 12

** Exercise 22

Consider Figure 12. Suppose
m∠L = 45◦ and m∠M = 45◦.

Use the given information to
find the remaining side lengths.

(a) ℓ = 5

(b) m =
√
6

(c) n = 7
√
2

(d) n =
√
3

•

•

•
P

Q

R q

rp

Figure 13

** Exercise 23

In Figure 13, suppose m∠P =
30◦ and m∠R = 60◦. One
length of △PQR is given. What
are the remaining side lengths?

(a) p = 4

(b) r = 2
√
3

(c) q = 16

(d) p =
√
6

(e) r = 7
√
5

(f) q =

√
3

6
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• •

•

•

W X

Figure 14

*** Exercise 24

Consider Figure 14. Suppose
circle W and circle X both have
a radius of 2. Find the area of
the shaded region.

*** Exercise 25

A circle of radius 2 is inscribed
within an equilateral triangle.

(a) Find the ratio of the ra-
dius of the circle to the
altitude of the equilateral
triangle.

(b) What is the area of the tri-
angle?

Hint: The radius of an inscribed
circle is perpendicular to the
boundary of the equilateral tri-
angle at the points of tangency.

Figure 15

*** Exercise 26

In Figure 15, suppose the radius
of the large circle is 10, and the
four gray circles have the same
radius. Find the total area of
the gray circles. Hint: The ra-
dius of a circle is perpendicular
any of the circle’s tangent lines
at the point of tangency.

Figure 16

*** Exercise 27

Consider Figure 16. Suppose
the radius of the large circle is 6,
and the radii of the six gray cir-
cles are equal. Calculate the ra-
tio of the gray area to the white
area. Hint: The radius of a cir-
cle is perpendicular to any of the
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circle’s tangent lines at the point
of tangency.

•

•

••
A

B

CD
Figure 17

*** Exercise 28

In Figure 17, suppose △BCD is
equilateral and AB = 6. Find
the area of △ABD.

•

•

• •
S

T

U V

Figure 18

*** Exercise 29

Consider Figure 18. Suppose
m∠U = 45◦ and m∠SV T =
60◦.

(a) What is UV when ST =
7
√
3?

(b) Find UV if V S = 5.

(c) Assume UT = 15
√
2.

Then TV is equal to what?

(d) Find ST if UV = 8.

*** Exercise 30

In Figure 18, let m∠U = 30◦

and m∠STV = 45◦.

(a) Find UV given V S = 10.

(b) Suppose UV = 2. What is
V T?

(c) If UV = 10, then TU
equals what?

(d) Find UV given the area of
△TUV is 100(

√
3 + 1).
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• • •
V

WX

Y Z

Figure 19

*** Exercise 31

Consider Figure 19. Sup-
pose m∠VWZ = 60◦ and
m∠Y XZ = 45◦

(a) If XY = 5, then V Y is
equal to what?

(b) Say WX = 20. Find XZ.

(c) Suppose the area of rect-
angle VWXY is 1 +

√
3.

What is WZ?

(d) Assume the area of
△VWZ is 18

√
3. Find

the area of △XY Z.

*** Exercise 32

Use Figure 19 to solve the fol-
lowing problems.

(a) Suppose XY = 18,
m∠VWZ = 45◦, and
m∠Y XZ = 30◦. What
is the value of V Y ?

(b) Let WX = 72,
m∠Y XZ = 30◦, and
m∠VWZ = 45◦. Find
XY .

(c) Assume WX = 100,
m∠WXZ = 45◦, and
m∠V ZW = 30◦. Find
XZ.

(d) Suppose the area of
△XY Z is 8

√
3. If

m∠Y XZ = 30◦ and
m∠XWZ = 45◦, then the
area of △WXZ is equal
to what?
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Chapter 3

Radians, Arc Length,
and Rotational Motion

This chapter will further elaborate on our understanding of an-
gles. We will provide a richer definition of an angle. Then we
will introduce radian measures and their applications. Knowledge
of Chapters 1 and 2 is assumed. This chapter contains a modest
amount of calculator problems.

3.1 Directed Angles

In Chapter 1, we reviewed the concept of an angle taught in geom-
etry class. However, this definition is not sufficiently robust for our
purposes. For example, the angles students study in geometry have
measure no greater than 180◦, and they do not have an orientation.
Let us introduce a richer formulation of an angle.

59



Definition 3.1 Consider rays
−→
OX and

−→
OY . A rotation of

−→
OX

about O which terminates at
−→
OY is the directed angle ∠XOY .

Ray
−→
OX is the initial side and

−→
OY is the terminal side of

∠XOY .

XO

Y

••

•

initial side

terminal side

Because any angle from geometry can be a directed angle, we will
not introduce special notation for directed angles. Simply assume
an angle is directed when it is necessary given the context.

Like angles from geometry, directed angles have measures. The
measure of the directed angle ∠X is denoted m∠X. However,
unlike angles from geometry, it makes sense for a directed angle to
be signed. Let us introduce a convention.

A directed angle has positive measure if its initial side
rotates counterclockwise to its terminal side.

A directed angle has negative measure if its initial side
rotates clockwise to its terminal side.
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D

E

F
•

•

•

GH

I

••

•

In the diagram to the left, ∠DEF has
positive measure. This is because its ini-

tial side
−→
ED rotates counterclockwise to

its terminal side
−→
EF .

In contrast, ∠GHI has negative measure

because its initial side
−→
HG rotates clock-

wise to its terminal side
−→
HI.

Angles of measure greater than 180◦ or
less than −180◦ are a natural concepts
within the context of directed angles. In-
deed, careful measurements would reveal

m∠DEF = 315◦ and m∠GHI = −240◦.

The initial side of a directed angle can rotate
more than one revolution before it reaches its ter-
minal side. This allows a directed angle to have
measure greater than 360◦ or less than −360◦.
However, it also introduces some ambiguity as
to which angle we are referring. Context should
alleviate this ambiguity, and when it does not as-
sume the angle rotates less than one revolution.
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Example 3.1 Write the corresponding degree measure for each
rotation.

(a) half a clockwise revolution

(b) two and a third counterclockwise revolutions

(c) seven and five-eighths clockwise revolutions

Solution

(a) Suppose α is the degree measure of half a clockwise revolu-
tion. Then

α

−1/2
=

360◦

1
implies α = −180◦.

(b) Let β be the degree measure of two and a third counterclock-
wise revolutions. We know 21

3 = 7/3, so

β

7/3
=

360◦

1
implies β = 840◦.

(c) Assume γ is degree measure of seven and five-eights clockwise
revolutions. Since −7 5

8 = −61/8,

γ

−61/8
=

360◦

1
implies γ = −2745◦.

■

Note that the sign of the revolution is determined by whether it
rotates counterclockwise or clockwise.

3.2 Radian Measure of an Angle

Definition 3.2 An arc is a portion of a circle.
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•

•

θ s

We say arc s “subtends” central angle θ or central
angle θ is “subtended” by arc s.

Notice the natural correspondence between cen-
tral angle measures and arc lengths on any partic-
ular circle: Match each arc length with the mea-
sure of a central angle it subtends. Indeed, even

when an angle rotates more than one revolution, the correspon-
dence holds; just count the length of the overlapped portion of the
arc as many times as necessary. When an angle rotates clockwise,
consider the length of the arc to be negative.

Definition 3.3 Consider an arbitrary angle α. Place its vertex at
the center of a circle of radius 1. Suppose α is subtended by some
arc, which we will call s. The radian measure of α is the length
of the arc s.

sα

•

•

•
1

Usually, we either leave radian measures
unit-less or denote them by the unit
“rad”.

Let us consider some radian measures.
We know that the circumference of a cir-
cle is 2πr. This implies the radian mea-
sure of an angle of degree measure 360◦ is
2π(1) = 2π. It is also clear that 0◦ cor-
responds to 0 radians. In general, we can
use proportions to develop a relationship
between an angle measure and a radian measure. Suppose an angle
has degree measure α and radian measure s. Then

α

s
=

360◦

2π
implies

α

s
=

180◦

π
.
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Proposition 3.1

(i) To convert from degrees to radians, multiply the angle mea-
sure by

π

180◦
.

(ii) To convert from radians to degrees, multiply the radian mea-
sure by

180◦

π
.

Example 3.2 Convert into radian measures.
(a) 30◦, (b) 45◦, and (c) 60◦.

Solution

(a) We will utilize Proposition 3.1 (i) to convert the degree mea-
sures to radians. We have

30◦ ·
(︂ π

180◦

)︂
=

π

6
.

(b) Because of Proposition 3.1 (i),

45◦ ·
(︂ π

180◦

)︂
=

π

4
.

(c) Proposition 3.1 (i) allows us to conclude

60◦ ·
(︂ π

180◦

)︂
=

π

3
.

■
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Example 3.3 Convert into degree measures.
(a) π, (b) 2π/3, and (c) 3.

Solution

(a) We will use Proposition 3.1 (ii) to convert the radian mea-
sures to degrees. We have

π ·
(︃
180◦

π

)︃
=

180◦

1
= 180◦.

(b) Proposition 3.1 (ii) tells us

2π

3
·
(︃
180◦

π

)︃
= 120◦.

(c) We utilize Proposition 3.1 (ii) to conclude

3 ·
(︃
180◦

π

)︃
=

540◦

π
≈ 171.887◦.

■

3.3 Arc Length

r

•

•

• θ s

Proposition 3.2 Consider a circle of radius r. Let θ be the radian
measure of a central angle. Then the central angle is subtended by
an arc of length

s = rθ

for 0 ≤ θ ≤ 2π.
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Proof We will prove this proposition with ratios. The arc length
of the entire circle is 2πr and the central angle corresponding to
the entire circle has radian measure 2π. Hence,

s

θ
=

2πr

2π
implies s = rθ.

■

Example 3.4 Suppose the central angle of a circle has measure
40◦. If the radius of the circle is 36, what is the length of the
corresponding arc?

Solution To use Proposition 3.2 we need to convert 40◦ to radians:

40◦ ·
(︂ π

180◦

)︂
=

2π

9
.

It follows that the arc length is

s = 36

(︃
2π

9

)︃
= 8π.

■

Example 3.5 Suppose the length of an arc is 20π and the radius
of the circle is 15.

(a) Find the radian measure of the central angle subtended by
the arc.

(b) What is the degree measure of the central angle subtended
by the arc?

Solution

(a) Let θ be the radian measure of the central angle. Since the
arc has length s = 20π and the radius is 15,

20π = 15θ implies θ =
4π

3
.

(b) This is an application of Proposition 3.1 (ii):

4π

3
·
(︃
180◦

π

)︃
= 240◦.
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■

14 in

14 in
2.5 in

3.5 in

• •

•

•

•

•

172◦

188◦

Example 3.6 The chain of a bicycle travels along the front and
rear sprockets. To the nearest inch, how long is the chain?

Solution The first step is to find the amount of chain touching each
sprocket. Let us convert the given degree measures into radians.
Since the question is looking for an approximate answer, we round
where needed:

172◦ ·
(︂ π

180◦

)︂
≈ 3.0 rad and 188◦ ·

(︂ π

180◦

)︂
≈ 3.3 rad.

It follows that that the lengths of the chain touching each sprocket
are

2.5(3.0) = 7.5 in and 3.5(3.3) ≈ 11.6 in,

respectively.

Hence, the total length of the chain is about

7.5 + 14 + 11.6 + 14 ≈ 47 in

or about 3 feet 11 inches. ■

3.4 Area of a Sector

Definition 3.4 A sector of a circle is the region of a circle bound
between two radii and their intercepted arc.
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• •

•

θO A

B In the diagram to the left, sector ABO is
bounded by the radii AO and BO as well
as the arc AB. Arc AB subtends cen-
tral angle θ. Our next proposition allows
us to find the area of sectors like sector
ABO.

Proposition 3.3 Consider a circle of radius r, and let θ be the
radian measure of the central angle. Suppose 0 ≤ θ ≤ 2π. Then
the area of the sector bounded by angle θ and the arc which subtends
θ is

A =
r2θ

2
.

Proof The area of the entire circle is πr2, which corresponds to a
radian measure of 2π. Using ratios, we have

A

θ
=

πr2

2π
implies A =

r2θ

2
.

■

Example 3.7 Consider a circle of diameter 10, and suppose central
angle φ has measure 25◦. Find the area of the sector bounded by
φ and the arc which subtends φ.

Solution We will use Proposition 3.3. Let us convert 25◦ to radi-
ans:

25◦
(︂ π

180◦

)︂
=

5π

36
.

The radius of the circle is 10/2 = 5. So, the area of the sector
bounded by φ and the arc which subtends φ is

52(5π/36)

2
=

125π/36

2/1

=
125π

36
· 1
2

=
125π

72
.
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■

Example 3.8 Suppose the area of a sector is 144π, and the corre-
sponding central angle has measure 30◦. What is the length of the
circle’s radius?

Solution The first step is to convert 30◦ to radians:

30◦ ·
(︂ π

180◦

)︂
=

π

6
.

Hence, Proposition 3.3 tells us

r2(π/6)

2
= 144π implies

πr2

12
= 144π.

A bit of algebra shows
r2 = 1728,

which implies

r =
√
1728

=
√
576 · 3

=
√
576 ·

√
3

= 24
√
3.

■

3.5 Linear and Angular Velocity

Recall linear velocity from algebra class. When a point moves
uniformly, its linear velocity is

v =
d

t
,

where d is the distance the point travels in t units of time.

r

rθ

θ
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When the point moves along an arc of radius r, Proposition 3.2
tells us that the distance it travels is d = rθ, where θ is the radian
measure that the point rotates in t units of time. As a result, the
linear velocity is

v =
rθ

t
.

This formulation of velocity is suitable in some contexts. However,
notice that an object which rotates equally as fast will not have
the same linear velocity if its radius is different.

Let us elaborate on this further. Consider points A and B which

lie on
−→
OB. Further, suppose

−→
OB rotate about O.

•

•

•

O

A

B

After a bit of thought, it is clear that the linear velocity of point
A is less than that of B, because AO < BO. However, in some
sense, both points are moving at the same rate. More specifically,

since both points lie on
−→
OB, the change in their angle measures

over any time interval t is the same. Our next definition provides
a vocabulary for this formulation of velocity.

Definition 3.5 When an object rotates about a point, the ob-
ject’s angular velocity is the rate of change of θ with respect to
time, where θ is the central angle subtended by the initial and final
position of the object.

This definition is too broad for our purposes. Our next proposition
makes angular velocity more tractable.

Proposition 3.4 Suppose an object rotates at a uniform rate of θ
radians per t units of time. Then the angular velocity of the object
is

ω =
θ

t
.
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Example 3.9 A point rotates π/7 radians in two minutes. Find
its angular velocity.

Solution The angular velocity of the point is

ω =
π/7

2
=

π

14
rad/min.

■

Example 3.10 An object rotates at an angular velocity of π/3 ra-
dians per second. How many complete revolutions does the object
travel in 100 seconds?

Solution We know

ω =
θ

t
implies θ = tω.

It follows that the object rotates

θ = 100
(︂π
3

)︂
=

100π

3
rad

in 100 seconds.

All that is left is to convert to revolutions. There are 2π radians
in one revolution. Therefore, the object travels

100π/3

2π
=

50

3
= 16

2

3
rev

in 100 seconds. We conclude that the object completes 16 revolu-
tions in 100 seconds. ■

Example 3.11 Tim and Natalia play on a merry-go-round which
has a radius of three meters. Tim sits half-way between the center
of the merry-go-round and the outside edge, and Natalia sits at the
edge. The merry-go-round makes a complete revolution every two
seconds.

(a) Find Tim and Natalia’s rotational velocities measured in ra-
dians per second.

(b) Compute their linear velocities.
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Solution

(a) The rotational velocity is not affected by the position of each
person on the merry-go-round. So, we only need to find one
value. They rotate one complete revolution every two sec-
onds, which means they both rotate θ = 2π radians every
t = 2 seconds. Hence,

ω =
2π

2
= π rad/sec.

(b) Tim and Natalia’s linear velocities are different because Tim
is closer to the center of the merry-go-round than Natalia.
The distance Tim travels per revolution is 2π(1.5) = 3π,
since he sits midway between the center and the outside edge.
Hence, Tim’s linear velocity is

v =
3π

2
m/sec.

The distance Natalia travels per revolution is 2π(3) = 6π,
because she sits at the outside edge of the merry-go-round.
Thus, Natalia’s linear velocity is

v =
6π

2
= 3π m/sec.

■

Example 3.12 Consider the bicycle in Example 6. If the larger
sprocket is rotating 100 revolutions per minute, what is the rota-
tional velocity of the smaller sprocket?

Solution Since the two sprockets share the same belt, they have
the same linear velocity. As a result, our strategy is to find the
linear velocity of the larger sprocket and use it to find the rotational
velocity of the smaller one.

The larger sprocket travels 2π(3.5) = 7π inches each revolution.
Since it travels 100 revolutions in a minute, its linear velocity is

100(7π)

1
= 700π in/min.
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The smaller sprocket travels 2.5θ inches per minute, where θ is the
radian measure of the angle between the starting and final position
of a point on the cycle. Therefore, the sprocket’s linear velocity is
2.5θ/1 = 2.5θ inches per minute.

We are ready to find the smaller sprocket’s angular velocity. Since
the linear velocity of the two sprockets are equal, we have

2.5θ = 700π implies θ = 280π rad.

Hence, the rotational velocity of the smaller sprocket is

ω =
280π

1
= 280π rad/min.

Since our question was formulated in terms of revolutions, we will
convert our result into revolutions per minute. There are 2π radians
in one revolution. Therefore, the rotational velocity is

ω =
280π rad

min
· rev

2π rad
= 140 rev/min.

■
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3.6 Exercises

** Exercise 1

Find the degree measure of each
directed angle.

(a) 3 clockwise revolutions

(b) 1/4 counterclockwise revo-
lutions

(c) 3/4 clockwise revolutions

(d) 15/16 counterclockwise
revolutions

(e) π clockwise revolutions

(f) 17/6 counterclockwise rev-
olutions

•

1
2

3

4
567

8

9

10
11 12

Figure 1

** Exercise 2

In Figure 1, the initial side of the
directed angle θ is the minute
hand, and the terminal side is
the hour hand. If 0 ≤ θ < 360◦,
find the measure of θ at the
given times.

(a) 3:00

(b) 9:00

(c) 6:00

(d) 11:30

** Exercise 3

Consider Figure 1. Suppose the
initial side of the directed angle
φ is the minute hand, and the
terminal side is the hour hand.
Find the measure of φ at the
given times. Suppose −180◦ <
φ ≤ 180◦.

(a) 1:00

(b) 8:00

(c) 6:00

(d) 7:30

* Exercise 4

Convert to degrees.

(a)
π

3

(b)
π

4

(c) π

(d)
π

6

(e) 2π

(f)
π

2

* Exercise 5

Convert to radians. Write in
terms of π.

(a) 30◦

(b) 180◦

(c) 60◦

(d) 45◦

(e) 360◦

(f) 90◦
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* Exercise 6

Convert to degrees.

(a) −6π

5

(b)
17π

10

(c) −2π

3

(d)
6π

5

(e) −9π

5

(f)
7π

10

* Exercise 7

Convert to radians. Write in
terms of π.

(a) 337.5◦

(b) −190◦

(c) 195◦

(d) −285◦

(e) 150◦

(f) −22.5◦

r

•

•

• θ s

Figure 2

** Exercise 8

In Figure 2, find the missing
variable using the given infor-
mation. Write the measure
of the central angle in degrees
whenever θ is not given.

(a) r = 10 and θ =
π

4

(b) r = 22 and θ = 15◦

(c) r = 12 and s =
17π

4

(d) s = 15π and θ = 10◦

** Exercise 9

Janet is measuring the distance
she travels by bicycle each day.
She attached a device to her
bicycle wheel which counts the
number of revolutions her wheel
makes. Janet’s bicycle wheel
has a diameter 74 cm. Find the
distance Janet traveled suppos-
ing her device has the following
reading at the end of the day.
Round your answer to the near-
est kilometer.

(a) 3441

(b) 2150

(c) 3392

(d) 1250
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*** Exercise 10

Consider Figure 1. Suppose the
minute hand is 6 cm long and
the hour hand is 5 cm long.

(a) What is the distance the
tip of the minute hand
travels each minute?

(b) Find the distance the tip
of the hour and travels in
an hour.

(c) Over 15 minutes, how far
does the tip of the minute
hand travel?

(d) What is the distance the
tip of the hour hand trav-
els in 15 minutes?

(e) How far does the minute
hand travel in 2 hours?

(f) Find the distance the tip
of the hour hand travels in
45 minutes.

1
•

• •
2
√
2

1 +
√
2

Figure 3

*** Exercise 11

Consider Figure 3. Calculate
the length of the thick band.
Hint: The radius of a circle
is perpendicular to any tangent
line at the point of tangency.

** Exercise 12

In Figure 2, suppose A is the
area of the sector bounded by
two radii and arc s. Of the vari-
ables A, r, and θ, two will be
given. Find the third. Write the
central angle in degrees when-
ever θ is not given.

(a) r = 10 and θ =
π

8

(b) r = 15 and θ = 315◦

(c) r = 14 and A = 28π

(d) A =
55π

12
and θ = 66◦

(e) A =
121π

3
and θ = 80◦

(f) A =
15π

8
and r =

5
√
3

2

** Exercise 13

Consider Figure 1. Suppose A is
the area of the sector bounded
by two radii and arc s. Prove
that

A =
rs

2
.

** Exercise 14

Let A, r, and s represent the
same variables as in Exercise 13.
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Two of the three variables will
be given, use the formula in Ex-
ercise 13 to find the third.

(a) r = 2 and s =
8π

3

(b) A = 18π and r = 6

(c) A =
49π

2
and s = 7π

** Exercise 15

A small pizza has a diameter of
6” and a giant one has a diam-
eter of 24”. The small and gi-
ant pizzas are cut into 4 and 16
slices, respectively. The parents
of twins want to give their kids
an equal amount of pizza. If one
of the twins is given a giant slice,
how many small slices should
the parents give to the other
child? Assume the small and gi-
ant pizzas are equally thick.

120◦

6

π x

√
7

Figure 4

*** Exercise 16

Consider Figure 4. Find x so
that the area on the left side of

the dashed line is equal to the
area on the right.

Figure 5

*** Exercise 17

In Figure 5, suppose each of the
three small circles has a radius
of length 10.

(a) Find the length of the
thick outer band in the di-
agram.

(b) Calculate the gray area.
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** Exercise 18

Suppose ω is rotational velocity,
θ is the angle of rotation, and
t is the time the rotation takes.
Two of the three variables will
be given. Find the third.

(a) t = 10 sec and θ =
5π

6
rad

(b) t = 4 min and θ = 50◦

(c) t = 50 days and θ = 215
rev

(d) θ =
2π

3
rad and ω =

17

6
rev/sec

(e) θ = 200◦ and ω = 7
rev/min

(f) t =
1

2
sec and ω = 2π

rad/sec

** Exercise 19

Suppose an object orbits a point
in a circular path of radius r.
Let v be the linear velocity, and
ω be the angular velocity of
the object. Suppose ω is mea-
sured in radians per unit of time.
Prove

v = rω.

** Exercise 20

Let r, v, and ω be as they are
defined in Exercise 19. Two of
the three variables will be given.
Use the formula in Exercise 19
to find the third.

(a) r = 10 ft and ω =
π

4
rad/min

(b) v = 300000 km/sec and
ω = 4π rad/sec

(c) r = 10 cm and v = 100
cm/hour

(d) r = π in and ω = 20
rad/year

** Exercise 21

Use the formula in Exercise 19
to find an easier way to solve Ex-
ample 12.

** Exercise 22

Consider Figure 1. Suppose the
minute hand is six centimeters
long and the hour hand is five
centimeters long. Compute . . .

(a) . . . the rotational and lin-
ear velocity of the minute
hand.

(b) . . . the rotational and lin-
ear velocity of the hour
hand.

Write the rotational velocity in
radians per minute and the lin-
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ear velocity in centimeters per
minute.

** Exercise 23

Kate and Dave play on a merry-
go-round which has a twelve me-
ter diameter. Kate sits two me-
ters from the center and Dave
sits on the outside edge. The
merry-go-round makes a com-
plete revolution every fifteen
seconds. Calculate . . .

(a) . . .Kate’s rotational veloc-
ity in radians per second.

(b) . . . Dave’s rotational ve-
locity in radians per sec-
ond.

(c) . . . Kate’s linear velocity
in meters per second.

(d) . . . Dave’s linear velocity
in meters per second.

Planet Distance
to sun
(106

km)

Earth
days/rev

Mercury 58 88
Venus 108 225
Earth 150 365
Mars 228 687
Jupiter 778 4330
Saturn 1470 10751
Uranus 2871 20686
Neptune 4497 60156

* Exercise 24

Consider the table above. Use a
calculator to compute the rota-

tional and linear velocity of each
planet. Assume the orbits are
perfect circles.

** Exercise 25

A belt attached to a pulley
moves at a rate of 5π/4 meters
per minute. The belt rotates
the pulley two revolutions per
minute. Compute the diameter
of the pulley.

• • •A
B

C

Figure 6

** Exercise 26

In Figure 6, circle A and cir-
cle C are tangent at B. Sup-
pose circle A rotates counter-
clockwise at a rate of three revo-
lutions per minute, and circle C
rotate clockwise at a rate of two
revolutions per minute. Calcu-
late

AB

BC
.

79



Figure 7

*** Exercise 27

Consider Figure 7. Suppose the
rear wheel of the bicycle has di-
ameter 24”, the pedals have a
radius 9”, the rear sprocket has
a radius of 2 1

2” and the sprocket
attached to the pedals has a ra-
dius of 6”. The bicycle travels
100’. Use a calculate to find the
following.

(a) How many times did the
rear wheel rotate?

(b) How many times did the
pedals rotate?
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Chapter 4

Right Triangle
Trigonometry

In this chapter, we will study the trigonometry of right triangles.
For pedagogic reasons, a definition of the trigonometric functions
will be delayed until Chapter 5. We assume knowledge of Chapters
1, 2, and 3. Readers unfamiliar with square roots may find Ap-
pendix B helpful. Because trigonometric functions require either
a calculator or a table to be evaluated at most angle measures, it
is assumed that the reader has access to a scientific calculator and
knowledge of its basic functionality.

4.1 Introduction to Trigonometric Func-
tions

The three trigonometric functions that we will study in this chapter
are sine, cosine, and tangent. Their values at ∠A are denoted by

sinA, cosA, and tanA,

respectively.

For the time being, we will rely on our calculators, instead of a
definition, for the correspondence between angle measures and the
outputs of each trigonometric function.
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Example 4.1 Use a calculate to find each of the following. Round
to three decimal places.

(a) sin 72◦

(b) cos 22◦

(c) tan 27◦

(d) 3 sin 10◦

Solution Make sure your calculate is set to degree mode when you
evaluate.

(a) sin 72◦ ≈ 0.951

(b) cos 22◦ ≈ 0.927

(c) tan 27◦ ≈ 0.510

(d) 3 sin 10◦ ≈ 0.521

■

Our next theorem, Theorem 4.1, is very powerful because it relates
the values obtained from evaluation of trigonometric functions to
ratios of a right triangle’s side lengths. As a result of Theorem 4.1,
when given a side length and an angle measure of a right triangle,
we can find the other two side lengths using only a bit of algebra.

•

•

•
A

B

C

c a

b

Theorem 4.1 For any △ABC where ∠C is right, the following
trigonometric ratios hold.

sinA =
a

c
and sinB =

b

c

cosA =
b

c
cosB =

a

c

tanA =
a

b
tanB =

b

a
.
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Many students remember these relationships by means of a mnemonic
device such as the following.

SohCahToa

Sine is opposite over hypotenuse.
Cosine is adjacent over hypotenuse.
Tangent is opposite over adjacent.

•

•

•
P

Q

R25

15◦ pr

Example 4.2 Find the lengths of the remaining sides of the tri-
angle.

Solution Let us start by finding p. We know the length of the
hypotenuse and we want to find the length of the leg opposite ∠P .
Theorem 4.1 tells us sine relates these sides. In particular, it says

sin 15◦ =
p

25
implies p = 25 sin 15◦ ≈ 6.470.

Let us find r. We know the hypotenuse and we want to find the
length of the leg adjacent to ∠P . According to Theorem 4.1, cosine
relates these sides. Specifically,

cos 15◦ =
r

25
implies r = 25 cos 15◦ ≈ 24.148.

■

Notice that we could have used tangent to find r, but that would
require the value of p which we had previously found. This is a
mathematically legitimate strategy. However, using p to find r
would result in a less accurate value of r, due to rounding error.
We recommend using the given information as much as possible.

83



•

••

X

YZ

y

3

z
56◦

Example 4.3 Find y and z in the diagram.

Solution Let us find y. We know the length of the leg opposite
∠X, and we want to find the length of the leg adjacent ∠X. The
trigonometric function which relates these sides is tangent. We
have

tan 56◦ =
3

y
implies y =

3

tan 56◦
≈ 2.024.

All that is left is to find z. We know the length of the side oppo-
site ∠X, and we want to find the hypotenuse. The trigonometric
function which relates these sides is sine. In particular,

sin 56◦ =
3

z
implies z =

3

sin 56◦
≈ 3.619.

■

15

•

•

•
X

Y

Z

z

y

70◦

Example 4.4 Find (a) the area and (b) the perimeter of △XY Z.

Solution
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(a) Recall that the area of a triangle is

1

2
bh,

where b is the base and h is the height. If we treat x as the
length of the height, then y is the length of the base. As
result, our task is to find y. Notice

tan 70◦ =
y

15
implies y = 15 tan 70◦.

It follows that the area of △XY Z is

1

2
(15 tan 70◦) (15) =

225 tan 70◦

2
≈ 309.091.

(b) We already know y = 15 tan 70◦, so all that we need is z. We
have

cos 70◦ =
15

z
implies z =

15

cos 70◦
.

Thus, the perimeter of △XY Z is

x+ y + z = 15 + 15 tan 70◦ +
15

cos 70◦
≈ 100.069.

■

•

•

••
T

U

VW20 u
50◦30◦

Example 4.5 What is the value of u?

Solution The idea is to use Theorem 4.1 on △UVW and △TUV .
The theorem allows us to write UV in terms of u two ways, which
lets us establish an equation. Then we can solve for u.
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In △UVW , the length UV is opposite ∠UWV , and VW = u is
adjacent ∠UWV . The trigonometric function which relates these
sides is tangent. Therefore,

tan 50◦ =
UV

u
implies UV = u tan 50◦.

Consider △TUV . We know UV is opposite ∠T , and TV = u+ 20
is adjacent ∠T . Once again, tangent relates these sides. It follows
that

tan 30◦ =
UV

u+ 2
implies UV = (u+ 20) tan 30◦.

Since UV = UV , we have

u tan 50◦ = (u+ 20) tan 30◦

⇒ u tan 50◦ = u tan 30◦ + 20 tan 30◦

⇒ u tan 50◦ − u tan 30◦ = 20 tan 30◦

⇒ u(tan 50◦ − tan 30◦) = 20 tan 30◦

⇒ u =
20 tan 30◦

tan 50◦ − tan 30◦
≈ 18.794.

■

Because there is a correspondence between radian measures and
degree measures, evaluation of trigonometric functions at radian
measures makes sense. The value of a trigonometric function at
a radian measure is simply equal to the trigonometric function
evaluated at the corresponding degree measure.

As a practical matter, evaluation of trigonometric functions at ra-
dian measures is simply a matter of adjusting your calculator to
the correct mode.

Example 4.6 Evaluate.

(a) sin
π

5

(b) 12 cos
3π

7

(c) 5 tan
π

11

(d) sin 1
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Solution

(a) sin
π

5
≈ 0.588

(b) 12 cos
3π

7
≈ 2.670

(c) 5 tan
π

11
≈ 1.468

(d) sin 1 ≈ 0.841

■

In Example 6 (d), there was no π in the expression. However, we
know that we are evaluating a radian measure because there is no
degree symbol.

In general, we advise readers to be mindful of the units. Using the
incorrect setting changes the output. For example,

tan 15◦ ≈ 0.268 and tan 15 ≈ −0.856.

The first result is tangent evaluated at the degree measure 15◦,
and the second is tangent evaluated at the radian measure 15. The
latter corresponds to a degree measure of about 859.437◦.

4.1.1 Trigonometric Functions and Special Right
Triangles

We can use special right triangles to find the exact values of our
three trigonometric functions evaluated at 30◦, 45◦, and 60◦.

Proposition 4.1

θ 30◦ 45◦ 60◦

sin θ
1

2

√
2

2

√
3

2

cos θ

√
3

2

√
2

2

1

2

tan θ

√
3

3
1

√
3
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Proof We will prove the first column, and leave the rest as exer-
cises. Consider the 30◦-60◦-90◦ special right triangle.

2t

t
√
3

t

30◦

60◦

Then

sin 30◦ =
t

2t
, cos 30◦ =

t
√
3

2t
, and tan 30◦ =

t

t
√
3

=
1

2
=

√
3

2
=

1√
3
·
√
3√
3

=

√
3

3
.

■

This leads us to make a corresponding radian version of Proposition
4.1.

Proposition 4.2

θ
π

6

π

4

π

3

sin θ
1

2

√
2

2

√
3

2

cos θ

√
3

2

√
2

2

1

2

tan θ

√
3

3
1

√
3

Example 4.7 Evaluate.
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(a) tan 45◦

(b) sin
π

3

(c) cos 60◦

(d) tan
π

6

Solution This is an application of Proposition 4.1 and Proposition
4.2.

(a) tan 45◦ = 1

(b) sin
π

3
=

√
3

2

(c) cos 60◦ =
1

2

(d) tan
π

6
=

√
3

3

■

4.2 Inverse Trigonometric Functions

This section is an introduce to inverse trigonometric functions. In
particular, we introduce arc sine, arc cosine, and arc tangent. To
denote these functions evaluated at x, we write

arcsinx, arccosx, and arctanx,

respectively.

We will introduce a partial definition of arc sine, arc cosine, and
arc tangent here. A more robust definition is contained in Chapter
8.

Definition 4.1 Suppose that 0 ≤ θ ≤ 90◦.

• The arc sine function f(x) = arcsinx is defined by the rela-
tionship

arcsinx = θ if sin θ = x

for −1 ≤ x ≤ 1.

• The arc cosine function f(x) = arccosx is defined by the
relationship

arccosx = θ if cos θ = x

for −1 ≤ x ≤ 1.
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• The arc tangent function f(x) = arctanx is defined by the
relationship

arctanx = θ if tan θ = x

for x ≥ 0.

There is alternative notation for these functions. In particular,

sin−1 x = arcsinx, cos−1 x = arccosx, and tan−1 x = arctanx.

We prefer the “arc” notation, because it is less confusing. The
−1 exponent in the alternative notation is sometimes incorrectly
interpreted as the reciprocal of the trigonometric function. For
example, sometimes students confuse sin−1 x and 1/ sinx.

Example 4.8 Find the degree measure of each value.

(a) arcsin
1

2
(b) arccos 5 (c) arctan 2 (d) cos−1

2

3

Solution

(a) arcsin
1

2
= 30◦

(b) arccos 5 is undefined because 5 is not in the interval [−1, 1].

(c) arctan 2 ≈ 63.435◦

(d) cos−1
2

3
≈ 48.190◦

■

Example 4.9 What is the radian measure of each value?

(a) sin−1 7 (b) arccos
2

5
(c) tan−1

√
3 (d) arcsin

6

11

Solution

(a) sin−1 7 is undefined because 7 is no in the interval [−1, 1].

(b) arccos
2

5
≈ 1.159 rad

(c) tan−1
√
3 ≈ 1.047 rad

(d) arcsin
6

11
≈ 0.577 rad
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■

Example 4.10 Suppose sinx = 0.7, cos y = 8/11, and tan z = 3.
Find the degree measure of (a) x, (b) y, and (c) z. Assume the
angle measures are acute.

Solution We will utilize Definition 4.1 for (a), (b), and (c).

(a) Because sinx = 0.7, we have x = arcsin 0.7 ≈ 44.427◦.

(b) Due to the fact that cos y = 8/11, the definition of arc cosine
tells us y = arccos (8/11) ≈ 43.342◦.

(c) Since tan z = 3, we conclude z = arctan 3 ≈ 71.565◦.

■

Problems like those in Example 10 could require radian measures
as well. However, the only change in procedure is to convert your
calculator to radian mode.

Example 4.11 Let cosA = 5/7. Find the radian measure of ∠A.

Solution We make sure to change our calculator to radian mode.
Then

cosA =
5

7
implies m∠A = arccos

5

7
≈ 0.775 rad.

■

4

2.5

•

•

•
X

Y

Z

Example 4.12 Find the degree measures of ∠X and ∠Y .
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Solution Theorem 4.1 and Definition 4.1 tell us that

tanX =
2.5

4
implies m∠X = arctan

2.5

4
≈ 32.005◦

and

tanY =
4

2.5
implies m∠Y = arctan

4

2.5
≈ 57.995◦.

■

27◦

2
√
5

1.5
•

•

• •
P

Q

R S

Example 4.13 Find the degree measure of ∠R.

Solution Once we find QS, we can use arc tangent to find m∠R.
We know

QS = 2
√
5 sin 27◦ ≈ 2.030.

It follows that

tanR =
2.030

1.5
implies m∠R ≈ arctan

2.030

1.5
≈ 53.543◦.

■

4.3 Angles of Elevation and Depression

Definition 4.2

• An angle of depression is formed by a horizontal ray and
another ray below it.

• An angle of elevation is formed by a horizontal ray and
another ray above it.
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α

β

In the diagram on page 93, α is an angle of depression and β is an
angle of elevation.

Example 4.14 A man is standing 500 feet away from a tall build-
ing. If the angle of elevation to the top of the build from his
perspective is 63◦, how tall is the building?

Solution The first step is to draw a diagram. We assume that
the building is perpendicular to the horizontal; this assumption is
standard practice when solving this type of problem. We neglect
the height of the man, because the question did not provide it.

500 ft

h

63◦

Let h be the height of the building. Then

tan 63◦ =
h

500
implies h = 500 tan 63◦ ≈ 981.305.

Hence, the building is about 981 feet tall. ■
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Example 4.15 A canoe is tethered to the floor of a dock by a rope
of length 1.5 meters. The canoe is 1 meter below the floor of the
dock. Calculate the angle of depression of the rope.

θ

1 m
1.5 m

Solution Proposition 1.2 tells us that alternate interior angles are
congruent. So, the angle opposite the 1-meter side in the triangle
above has measure θ. Hence,

sin θ =
1

1.5
implies θ = arcsin

1

1.5
≈ 41.810◦.

Thus, the angle of depression is about 41.810◦. ■

Example 4.16 Tom, Jim, and Gwen are hiking in a steep canyon
195 meters deep. Tom is just starting, Jim has been hiking for
awhile but has not reached the bottom, and Gwen is already at
the bottom. Tom looks down at an angle of depression of 45◦ to
see Jim. Gwen looks up to see Jim at an angle of elevation of 58◦.
What is Jim’s vertical distance from Tom, if Tom and Gwen are
a horizontal distance of 150 meters apart and Jim is horizontally
between Gwen and Tom?
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y

45◦

58◦

195 m

150 m

Gwen

Jim

Tom

Solution To find the vertical distance between Jim and Tom y, we
will set up two right triangles which contain y. Then we can use
trigonometry and algebra to find y.

The first right triangle we consider is the one which has Jim and
Tom each standing at a vertex. Using the fact that alternate in-
terior angles are congruent and the 45◦ − 45◦ − 90◦ special right
triangle, we know the horizontal distance between Tom and Jim is
also y.

The second triangle we consider is the one which has Gwen and
Jim each standing at a vertex. It is clear from our previous work
that the horizontal distance between Jim and Gwen is 150− y and
the vertical distance between Jim and Gwen is 195− y. This gives
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us the following triangle.

58◦

150− y

195− y

•

•

Gwen

Jim

All that is left is a computation:

tan 58◦ =
195− y

150− y
⇒ (150− y) tan 58◦ = 195− y
⇒ 150 tan 58◦ − y tan 58◦ = 195− y
⇒ y − y tan 58◦ = 195− 150 tan 58◦

⇒ y(1− tan 58◦) = 195− 150 tan 58◦

⇒ y =
195− 150 tan 58◦

1− tan 58◦
≈ 75.042.

We conclude that the vertical distance between Jim and Tom is
about 75 meters. ■
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4.4 Exercises

* Exercise 1

Evaluate. Round to three deci-
mal places.

(a) tan 47◦

(b) sin 17◦

(c) sin 83◦

(d) 5 cos 42◦

(e) 6 tan 1◦

(f) 4 cos 15◦

* Exercise 2

Evaluate. Round to three deci-
mal places.

(a) sin
8π

9

(b) tan
π

7

(c) 4 cos
3π

10

(d) tan 1.5

(e) 2 sin
7π

9

(f) 5 cos 0.2

a

b

c

Figure 1

•

•

•
A

B

C

* Exercise 3

Consider Figure 1. Suppose a =
3, b = 4, and c = 5. Find the
following.

(a) cosB

(b) tanA

(c) sinB

(d) sinA

(e) tanB

(f) cosA

* Exercise 4

Repeat Exercise 3, but assume
a = 2, b = 3, and c =

√
13.

* Exercise 5

In Figure 1, say m∠A = 34◦.
Use a calculator and the given
side length to find the lengths of
the remaining two sides.

(a) a = 7

(b) b = 11

(c) c = 20

(d) a =
√
7

* Exercise 6

Consider Figure 1. Suppose
m∠B = 50◦. Use a calculator
and the given side length to find
the lengths of the remaining two
sides.

(a) a = 18

(b) b = 5

(c) c = 102

(d) b =
7

5
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** Exercise 7

Use Figure 1 and the given infor-
mation to find (i) the area and
(ii) the perimeter of of △ABC.

(a) Suppose m∠A = 25◦ and
c = 19.

(b) Assume m∠B = 40◦ and
a = 25.

(c) Say m∠A = 35◦ and a =
10.

•

•

•

•

•
•

•
•

A

B

CE

F

D

G
H

Figure 2

** Exercise 8

In Figure 2, assume m∠A =
40◦, DE = 2, DF = DH, and
BC is parallel to EG. Find each
of the following.

(a) DF

(b) EF

(c) GH

(d) DG

** Exercise 9

Consider Figure 2. Let m∠B =
70◦, GH = 5, DF = 3

4DH, and

BC is parallel to EG. What are
each of the following?

(a) DG

(b) DH

(c) EF

(d) DE

Figure 3

*** Exercise 10

In Figure 3, suppose the radius
of the large circle is 12, and the
five gray circles have the same
radius. Find the total area of
the gray circles. Hint: Tangent
lines of circles are perpendicular
to radii at points of tangency.

Figure 4
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*** Exercise 11

Consider Figure 4. Say the ra-
dius of the large circle is 10, and
the radii of the nine gray circles
are equal. Calculate the ratio of
the gray area to the white area.
Hint: Tangent lines of circles are
perpendicular to radii at points
of tangency.

* Exercise 12

Find the exact value.

(a) sin 60◦

(b) cos 45◦

(c) tan 30◦

(d) cos 30◦

(e) sin 30◦

(f) tan 60◦

* Exercise 13

What is the exact value?

(a) sin
π

6

(b) tan
π

4

(c) cos
π

6

(d) tan
π

3

(e) cos
π

4

(f) sin
π

4

** Exercise 14

Prove the second and third col-
umn of Proposition 4.1.

•

•

• •
S

T

U V

Figure 5

*** Exercise 15

In Figure 5, let m∠U = 40◦ and
m∠SV T = 63◦.

(a) What is UV if SV = 5?

(b) Say ST = 12. Find UV .

(c) Assume TU = 21. What
is TV ?

(d) Find ST supposing UV =
8.
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*** Exercise 16

Use Figure 5 and suppose
m∠U = 35◦ and m∠STV =
75◦.

(a) Suppose UV = 12. Then
TU equals what?

(b) Find UV if SV = 12.

(c) Say UV = 2. What is
TV ?

(d) Assume the area of
△TUV is 300. What is
SV ?

••

• • •
V

WX

Y Z

Figure 6

*** Exercise 17

Consider Figure 6. Sup-
pose m∠VWZ = 40◦ and
m∠Y XZ = 27◦

(a) Assume WX = 15. Then
XZ is equal to what?

(b) Find V Y when XY = 10.

(c) Let the area of △VWZ be
33.984. What is the area
of △XY Z?

(d) Suppose the area of rect-
angle VWXY is 113.962.
Calculate the length WZ.

*** Exercise 18

Use Figure 6 to solve the follow-
ing problems.

(a) Say WX = 50,
m∠WXZ = 61◦, and
m∠V ZW = 25◦. Find
XZ.

(b) Assume XY = 18,
m∠VWZ = 42◦, and
m∠Y XZ = 29◦. What
is the value of V Y ?

(c) Let WX = 80,
m∠Y XZ = 28◦, and
m∠VWZ = 41◦. Then
the length XY is what?

(d) Suppose the area of
△XY Z is 4.807. If
m∠Y XZ = 31◦ and
m∠XWZ = 44◦, calcu-
late the area of △WXZ.
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• •

•

•

•

A B

C

D

E

30◦

15◦

Figure 7

*** Exercise 19

With the aid of Figure 7, find
the exact values of the following.

(a) sin 15◦

(b) cos 15◦

(c) tan 15◦

Hint: Notice that m∠BAD =
45◦ and m∠D = 45◦ and use
special right triangles.

* Exercise 20

Find the degree measure. Some
expressions are undefined.

(a) arcsin 0.2

(b) cos−1
√︃

1

7

(c) arctan 5

(d) sin−1 4

(e) arccos 0.25

(f) tan−1
1

3

* Exercise 21

What is the radian measure?
Some expressions are undefined.

(a) sin−1
√
5

3

(b) arccos 15

(c) tan−1
1

2

(d) arcsin
3√
3

(e) cos−1 0.7

(f) arctan 15

* Exercise 22

Find the degree measure of α.
Assume that α is an acute an-
gle.

(a) sinα =
3

7

(b) cosα = 0.2

(c) tanα =
17

13

(d) sinα = 0.5

(e) cosα =

√
2

2

(f) tanα =
√
3
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* Exercise 23

Compute the radian measure of
β. Assume that β is an acute
angle.

(a) sinβ =

√
2

5

(b) cosβ =
5

3
√
7

(c) tanβ = 0.78

(d) sinβ =

√
2

2

(e) cosβ =

√
3

2

(f) tanβ =

√
3

3

* Exercise 24

Use Figure 1 and the given infor-
mation to find the degree mea-
sure of ∠A.

(a) b = 10 and c = 11

(b) a = 3 and b = 5

(c) a = 1 and c = 7

(d) b = 5 and c = 9

* Exercise 25

Consider Figure 1. Find the ra-
dian measure of ∠B, using the
given information.

(a) a = 2 and c = 5

(b) a = 7 and b = 15

(c) b = 5 and c = 10

(d) a = 2 and b = 3

* Exercise 26

Use Propositions 4.1 and 4.2 to
fill in the table with the appro-
priate (a) degree measures and
(b) radian measures.

x
1

2

√
2

2

√
3

2

arcsinx

arccosx

* Exercise 27

Use Propositions 4.1 and 4.2 to
find the exact solution to each
equation. Write your answer (a)
using degrees and (b) using ra-
dians.

• tanα = 1,

• tanβ =
√
3, and

• tan γ =

√
3

3
.
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A D B

C

• • •

•
Figure 8

*** Exercise 28

Use the given information to
find the degree measure of the
angle in Figure 8.

(a) Suppose m∠B = 27◦,
BD = 4, and AC =

√
5.

Find m∠A.

(b) Let m∠BCD = 55◦,
BC = 6

√
10, and AD = 3.

What is m∠ACD?

(c) If AB = 10, m∠A = 61◦,
what is m∠B?

(d) Assume m∠A = 25◦,
BC = 4.5, and AC =
2
√
5. Find m∠B.

(e) Say m∠B = 45◦, AB =
7, and AC = 5. What
is m∠A, if its measure is
greater than 45◦?

3
•

• •
8

Figure 9

*** Exercise 29

Consider Figure 9. Calculate
the length of the thick band.
Hint: Tangent lines of circles are
perpendicular to radii at points
of tangency.

** Exercise 30

An observer sees a helicopter
that is a horizontal distance of
1 mile from her location. The
angle of elevation from the ob-
server’s perspective to the heli-
copter is 10◦.

(a) What is the distance be-
tween the helicopter and
the ground?

(b) Find the distance between
the observer and the heli-
copter.
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** Exercise 31

A yogi bends at the waist and
has a straight back and neck.
Suppose his back is bent to an
angle of depression of 60◦, and
the yogi is 168 cm tall. The
yogi’s back and head comprise
50% of his total height.

(a) What is the distance be-
tween the tip of the yogi’s
head and his legs?

(b) How far is the tip of
the yogi’s head from the
ground?

** Exercise 32

An airplane ascends from the
ground at an angle of elevation
of 25◦. Suppose there are 200
feet of runway left when the
plane lifts off.

(a) Calculate the distance the
plane has traveled since
lift off when it is at the end
of the runway.

(b) How far is the plane from
the ground when it is at
the end of the runway?

** Exercise 33

A daredevil is constructing a
ramp for a stunt. She designs
the ramp to have a horizontal
length of 5 feet and a vertical
height of 3 feet.

(a) Find the slant length of
the ramp.

(b) What is the angle of eleva-
tion of the ramp?

** Exercise 34

A young boy is inspecting a
slide. The vertical ladder to the
top of the slide is 4 feet. The
boy estimates that the angle of
depression from the top of the
ladder to the bottom of the slide
is 35◦.

(a) Calculate the length of the
slide.

(b) How far is the bottom of
the ladder from the bot-
tom of the slide?

(c) The boy observes that it
takes about 0.729 seconds
for a colleague to slide
down. What was the col-
league’s average speed?

** Exercise 35

A straight 10-mile road goes up
a hill. The change in eleva-
tion between the top and bot-
tom of the hill is 0.5 miles. Cal-
culate the angle of elevation of
the road.
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** Exercise 36

A tire swing hangs from a rope
of length 10 feet. The rope is
tied to a branch 12 feet from
the ground. A girl pulls the tire
back so that it is five feet from
the ground. What is the angle
of depression from the branch to
the tire? Assume the rope is
taut.

*** Exercise 37

An observer standing on a 500-
meter building looks down at
another building. The angle of
depression from the observer to
the top of the other building is
20◦ and the angle of depression
to the bottom of the building is
50◦.

(a) Calculate the height of the
other building.

(b) Find the distance between
the buildings.

*** Exercise 38

Heather and Sabrina are 300 feet
apart and are on opposite sides
of a tall tree. The angle of ele-
vation of Heather to the top of
the tree is 20◦ and the angle of
elevation of Sabrina to the tree
is 30◦. How tall is the tree? As-
sume both women are 5.5 feet
tall.

*** Exercise 39

The angle of elevation between
Vaibhav and a mountain is 35◦.
He walks 200 meters closer to
the mountain and his angle of
elevation is 45◦. Calculate the
height of the mountain.
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Chapter 5

Trigonometry of
General Angles

This chapter defines the trigonometric functions we studied in
Chapter 4. These definitions allow us to evaluate our trigonometric
functions at angles of arbitrary measure, albeit only exactly at a
limited number of values. We will introduce three more trigono-
metric functions as well: secant, cosecant, and cotangent. After our
definitions are provided, the rest of the chapter will study proper-
ties of trigonometric functions. Inverse trigonometric functions will
be discussed in Chapter 8. Students will not need a calculator.
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5.1 The Six Trigonometric Functions

The xy-coordinate system develops a correspondence between points
and ordered pairs (x, y).

y

x

QIQII

QIV QV

• Quadrant I (QI) is the set of points in the xy-plane such that
x > 0 and y > 0.

• Quadrant II (QII) is the set of points in the xy-plane such
that x < 0 and y > 0.

• Quadrant III (QIII) is the set of points in the xy-plane such
that x < 0 and y < 0.

• Quadrant IV (QIV) is the set of points in the xy-plane such
that x > 0 and y < 0.

Points on either of the two axes are not in any quadrant. For
example, the point (5, 0) does not belong to a quadrant; it is on
the x-axis. Similarly, the point (0,−2) is not in a quadrant; it is
on the y-axis.

Example 5.1 State the quadrant or axis in which each of the
points lies.

(a) T (−4, 2)

(b) U (1, 3)

(c) V
(︁√

8,−1
)︁

(d) W

(︄√
2

2
, 0

)︄
(e) X(−2,−3)

(f) Y (0,−π)

(g) Z

(︃
−11

7
,
3

2

)︃

Solution Let us graph these points, so we can see their location.
We will graph the points carefully. However, knowing whether
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each coordinate is positive, negative, or zero is enough to find the
quadrant or axis in which the point lies.

x

y

−4 −3 −2 −1 1 2 3

−3

−2

−1

1

2•
•

•
•

• •

•
T

U

V

W

X
Y

Z

From here, the conclusions follow easily:

(a) T is in quadrant II.

(b) U is in quadrant I.

(c) V is in quadrant IV.

(d) W is on the x-axis

(e) X is in quadrant III.

(f) Y is on the y-axis.

(g) Z is in quadrant II.

■

Definition 5.1 The unit circle is the set of points (x, y) of dis-
tance 1 from the origin. In other words, the unit circle is the set
of points (x, y) such that

x2 + y2 = 1.

Our goal is to create a correspondence between directed angles
and the unit circle. To achieve this, we will establish a convention
for the location of directed angles’ initial sides. This allows the
position of the terminal side to be completely determined by the
measure of the angle.

Definition 5.2 A standard position angle is an angle whose
initial side lies on the positive x-axis.
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Let us make the following convention:

Assume all angles are in standard position when they
are used within the context of trigonometric functions
unless there is a reason to suppose otherwise.

Because of this convention, we can be sloppy with our language.
We often refer to angles simply by their measures, e.g. we say
things like “angle 30◦”. We often say an angle “lies” in a particular
quadrant; when we do this, it is understood that we are referring
to the terminal side of a standard position angle.

We are ready to formulate our correspondence between standard
position angles and points on the unit circle: Let the angle θ cor-
respond to the point (x, y) where the terminal side of θ intersects
the unit circle.

x

y

(x, y)
•

•

1

θ

Example 5.2 Find the points on the unit circle corresponding to
(a) θ = 90◦, (b) θ = 180◦, and (c) θ = 30◦.

Solution

x

y

•

90◦

(0, 1)

(a) As can be seen from the diagram above, the point correspond-
ing to θ = 90◦ is (0, 1).

110



x

y

•

180◦

(−1, 0)

(b) The diagram illustrates that θ = 180◦ corresponds to (−1, 0).

(c) We need the 30◦ – 60◦ – 90◦ special right triangle.

x

y

•

(︁
t
√
3, t
)︁

2t

t
√
3

t
30◦

Since the radius of the unit circle is 1, we have

2t = 1 implies t =
1

2
.

Hence, the point corresponding to θ = 30◦ is
(︁√

3/2, 1/2
)︁
.

■

Using the 45◦–45◦–90◦ and 30◦–60◦–90◦ special right triangle we
can fill in some key points in the first quadrant of the unit circle.
Then symmetry gives us points in the other three quadrants.
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•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

x

y

0◦

30◦

45◦
60◦

90◦

120◦

135◦

150◦

180◦

210◦

225◦

240◦

270◦
300◦

315◦

330◦

0

π
6

π
4

π
3

π
22π

33π
4

5π
6

π

7π
6

5π
4 4π

3 3π
2

5π
3

7π
4

11π
6

(1, 0)

(︂√
3
2 , 1

2

)︂
(︂√

2
2 ,
√
2
2

)︂
(︂

1
2 ,
√
3
2

)︂
(0, 1)

(︂
− 1

2 ,
√
3
2

)︂
(︂
−
√
2
2 ,
√
2
2

)︂
(︂
−
√
3
2 , 1

2

)︂

(−1, 0)

(︂
−
√
3
2 ,− 1

2

)︂
(︂
−
√
2
2 ,−

√
2
2

)︂
(︂
− 1

2 ,−
√
3
2

)︂
(0,−1)

(︂
1
2 ,−

√
3
2

)︂
(︂√

2
2 ,−

√
2
2

)︂
(︂√

3
2 ,− 1

2

)︂

Definition 5.3 Suppose θ is an angle in standard position and
(x, y) is the corresponding point on the unit circle. Define

sin θ = y, cos θ = x, and tan θ =
y

x
.

A useful relationship that follows immediately from the above is
that

tan θ =
sin θ

cos θ
.

Example 5.3 Find sin θ, cos θ, and tan θ for (a) θ = 0, (b) θ = π/2,
and (c) θ = 3π/2 using the unit circle. When tangent is undefined
say so.
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x

y

(cos 0, sin 0)

(︁
cos π

2 , sin
π
2

)︁

(︁
cos 3π

2 , sin 3π
2

)︁

•

•

•

Solution

(a) We know θ = 0 corresponds to the point (1, 0). Therefore,

sin 0 = 0, cos 0 = 1 and tan 0 =
0

1
= 0.

(b) Since θ = π/2 corresponds to the point (0, 1),

sin
π

2
= 1 and cos

π

2
= 0.

Tangent is undefined at π/2, because tan θ = y/x and x = 0.

(c) Because θ = 3π/2 corresponds to the point (0,−1), we have

sin
3π

2
= −1 and cos

3π

2
= 0.

Tangent is undefined at 3π/2, because tan θ = y/x and x = 0.

■

We can utilize the unit circle on page 112 to evaluate trigonometric
functions at more sophisticated angle measures.

Example 5.4 Find the exact value of each of the following.

(a) sin 120◦, (b) cos
5π

4
, and (c) tan 330◦.

Solution
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(a) We see that the point corresponding to 120◦ is
(︁
−1/2,

√
3/2
)︁
.

Sine is the y-coordinate of this point. Hence,

sin 120◦ =

√
3

2
.

(b) The point corresponding to 5π/4 is
(︁
−
√
2/2,−

√
2/2
)︁
. Cosine

is the x-coordinate of this point. Thus,

cos
5π

4
= −

√
2

2
.

(c) The point corresponding to 330◦ is
(︁√

3/2,−1/2
)︁
. Tangent

is the ratio of the y- and x-coordinates. It follows that

tan 330◦ =
−1/2√
3/2

= −
√
3

3
.

■

Example 5.5 Suppose

cos θ = −
√
3

2
.

Find all θ that satisfy this equation for 0 ≤ θ < 2π.

Solution If cos θ = −
√
3/2, then the points corresponding to θ on

the unit circle must satisfy x = −
√
3/2. Via inspection of the unit

circle, we see that if the x-coordinate of the point is −
√
3/2 and

0 ≤ θ < 2π, then

θ =
5π

6
or θ =

7π

6
.

■

Definition 5.4 Suppose θ is an angle in standard position whose
terminal side intersects the unit circle at (x, y). Define

sec θ =
1

x
, csc θ =

1

y
, and cot θ =

x

y
.
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Definition 5.5 An identity is a statement of equality between
mathematical expressions, which holds for all values of the variables
contained within the domains of each expression.

Identities are the subject of Chapter 7. However, we will introduce
our first few in this chapter.

Proposition 5.1 (Reciprocal Identities) For θ a degree or ra-
dian measure each expression holds whenever it is defined.

• sec θ =
1

cos θ

• csc θ =
1

sin θ

• cot θ =
cos θ

sin θ

• cot θ =
1

tan θ
=

cos θ

sin θ

This proposition follows from simple substitutions, so we omit a
formal proof.

Example 5.6 Evaluate each of the follow.

(a) sec
7π

4
, (b) csc 60◦, and (c) cot

5π

6
.

Solution

(a)

sec
7π

4
=

1

cos(7π/4)

=
1√
2/2

=
2√
2
·
√
2√
2

=
√
2.

(b)

csc 150◦ =
1

sin 150◦

=
1

1/2

= 2.
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(c)

cot
5π

6
=

cos(5π/6)

sin(5π/6)

=
−
√
3/2

1/2

= −
√
3.

■

Example 5.7 Assume 0 ≤ φ < 360◦.

cotφ = −
√
3.

Solve for φ.

Solution We know that cotangent of φ is the ratio of the x- and
y-coordinates of the points corresponding to φ on the unit circle.
To help us identify the appropriate points, note that

−
√
3 = −

√
3/2

1/2
.

Then, via inspection of the unit circle, we see the ratio of the x- and
y-coordinates of either

(︁
−
√
3/2, 1/2

)︁
or
(︁√

3/2,−1/2
)︁
produces a

quotient of −
√
3. Angles 150◦ and 330◦ correspond to the points(︁

−
√
3/2, 1/2

)︁
and

(︁√
3/2,−1/2

)︁
, respectively. Hence,

φ = 150◦ or φ = 330◦.

■

5.2 Reference Angles

Committing the entire unit circle to memory is a challenge for many
students. In this section, we will develop techniques to dramatically
reduce the necessary amount of memorization.

Let us begin with a discussion of the sign of sine, cosine, and tan-
gent. Cosine and sine correspond to the x- and y-coordinates on
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the unit circle, respectively, so their signs depend on the quadrant
in which the terminal side of the angle lies.

x

y

QIQII

QIII QIV

The following table lists the quadrants in which sine, cosine, and
tangent are positive and negative.

Quadrant Positive Negative
I sine, cosine, and tangent none
II sine cosine and tangent
III tangent sine and cosine
IV cosine sine and tangent

Many students remember this using a mnemonic device. For ex-
ample,

A Smart Trig Class

All trigonometric functions are positive in quadrant I.
Sine is positive in quadrant II.
Tangent is positive in quadrant III.
Cosine is positive in quadrant IV.

Example 5.8 Determine in which quadrant θ lies via the signs of
the given trigonometric functions.

(a) cos θ > 0 and sin θ < 0

(b) tan θ > 0 and csc θ < 0

(c) cot θ < 0 and sec θ > 0

Solution
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(a) Since cos θ > 0, we know θ lies in quadrant I or IV. Because
sin θ < 0, we conclude θ lies in quadrant III or IV. The only
quadrant held in common is quadrant IV. Hence, θ lies in
quadrant IV.

(b) Since tan θ > 0, it follows that θ lies in quadrant I or III.
Due to the fact that csc θ < 0 implies sin θ < 0, it must be
the case that θ lies in quadrant III or IV. By the process of
elimination, θ lies in quadrant III.

(c) If cot θ < 0, then tan θ < 0, which means that θ lies in
quadrant II or IV. Because sec θ > 0 is the same as saying
cos θ > 0, we know θ lies in quadrant I or IV. Thus, θ must
lie in quadrant IV. ■

Definition 5.6 Consider the directed angle θ in standard position.
Suppose the terminal side of θ lies within a quadrant. The refer-
ence angle θR is the acute angle formed by the terminal side of θ
and either the positive or negative x-axis.

Note that the acuteness of θR determines whether the positive or
negative x-axis forms a side of θR. Only the closer of the two makes
an acute angle with the terminal side of θ.

We can find simple formulas for θR, if we suppose 0 < θ < 2π.
When the terminal side of θ is in quadrant I, the closest x-axis is
the positive one. So, the measure of the reference angle is

θR = θ.

The other three quadrants are a bit more complicated.

x

y

θ
θR

When the terminal side of θ is in quadrant II, θR is the angle formed
by the negative x-axis and terminal side of θ. Its measure is

θR = π − θ.
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x

y

θ

θR

When the terminal side of θ is in quadrant III, θR is the angle
formed by the negative x-axis and the terminal side of θ. Its mea-
sure is

θR = θ − π.

x

y

θ

θR

When the terminal side of θ is in quadrant IV, θR is the angle
formed by the positive x-axis and the terminal side of θ. Its mea-
sure is

θR = 2π − θ.

Proposition 5.2 summarizes the above.

Proposition 5.2 For an angle θ of radian measure between 0 and
2π or of degree measure between 0 and 360◦, the following table
provides the measure of the reference angle.

θR of θ QI QII QIII QIV

Radian measure θ π − θ θ − π 2π − θ

Degree measure θ 180◦ − θ θ − 180◦ 360◦ − θ
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The six trigonometric functions evaluated at θ and θR have the
same magnitude. So, to evaluate a trigonometric function at an
angle measure, evaluate it at its reference angle and change the
sign as needed.

Example 5.9 Evaluate

(a) tan
7π

4

(b) sin 120◦

(c) csc 210◦

(d) cos
5π

3

Solution

(a) Since
3π

2
<

7π

4
< 2π,

7π/4 lies in quadrant IV. This implies that tangent is nega-
tive. Furthermore, the reference angle is

θR = 2π − 7π

4
=

π

4
.

Since tan(π/4) = 1, we have

tan
7π

4
= − tan

π

4
= −1.

(b) Due to the fact that

90◦ < 120◦ < 180◦,

120◦ lies in quadrant II. Sine is positive in quadrant II. Fur-
thermore, the reference angle is

θR = 180◦ − 120◦ = 60◦.

We know sin 60◦ =
√
3/2. Therefore,

sin 120◦ = sin 60◦ =

√
3

2
.
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(c) The angle 210◦ lies in quadrant III, because

180◦ < 210◦ < 270◦.

It follows that sine is negative, which means its reciprocal
cosecant is also negative. Furthermore, the reference angle is

θR = 210◦ − 180◦ = 30◦.

We have sin 30◦ = 1/2. So,

csc 210◦ = − csc 30◦

= − 1

sin 30◦

= − 1

1/2

= −2.

(d) The inequality
3π

2
<

5π

3
< 2π,

tells us that 5π/3 lies in quadrant IV. As a result, we ex-
pect the output to be positive, because cosine is positive in
quadrant IV. Furthermore, the reference angle is

θR = 2π − 5π

3
=

π

3
.

Because cos(π/3) = 1/2,

cos
5π

3
= cos

π

3
=

1

2
.

■

5.3 More Evaluation Techniques

In this section, we will learn to evaluate trigonometric functions
for θ ≥ 360◦ and θ < 0.

Definition 5.7 The function f is periodic with period p > 0 if p
is the smallest number such that

f(x+ p) = f(x)
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for all x in the domain of f .

Proposition 5.3 All six trigonometric functions are periodic. Their
periods are given in the table below.

Degree period Radian period

cosx 360◦ 2π

sinx 360◦ 2π

tanx 180◦ π

secx 360◦ 2π

cscx 360◦ 2π

cotx 180◦ π

Using Proposition 5.3, it is not difficult to see that the output of
a trigonometric function is not affected by adding or subtracting
integer multiples of its period to the input. We can use this fact to
convert the input into a value between 0 and 360◦, and then utilize
the techniques discussed previously to evaluate.
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Example 5.10 Evaluate.

(a) cot(−1710◦)

(b) cos 5π

(c) tan

(︃
−4π

3

)︃
(d) csc 585◦

Solution

(a) Cotangent has period 180◦ when evaluated using degrees, and
−1710÷180 = −9 1

2 . So, we will add 180◦(10) = 1800◦ to the
input:

cot(−1710◦) = cot(−1710◦ + 1800◦) = cot 90◦ = 0.

(b) Cosine has period 2π when evaluated using radians, and 5π÷
(2π) = 2 1

2 . As a result, we will subtract 2π(2) = 4π from the
input:

cos 5π = cos(5π − 4π) = cosπ = −1.

(c) Tangent has period π when evaluated using radians, and
− 4π

3 ÷ π = −1 1
3 . To make the number inside positive, we

will add π(2) = 2π to the input:

tan

(︃
−4π

3

)︃
= tan

(︃
−4π

3
+ 2π

)︃
= tan

2π

3
.

Then we will use reference angles to evaluate:

tan
2π

3
= − tan

π

3
= −

√
3

3
.

Hence,

tan

(︃
−4π

3

)︃
= −

√
3

3
.

(c) Cosecant has period 360◦ when evaluated using degrees, and
585◦÷360◦ = 1 5

8 . Subtracting 360◦(1) = 360◦ from the input
makes the computation more tractable:

csc 585◦ = csc(585◦ − 360◦) = csc 225◦.

123



Using reference angles, we have

csc 225◦ = − csc 45◦

= − 1

sin 45◦

= − 1√
2/2

= −
√
2.

Therefore,
csc 585◦ = −

√
2.

■

Because trigonometric functions are periodic, if θ is a solution then
so is θ plus or minus an integer multiple of the period. With this
in mind, we are ready to handle general solutions of trigonometric
equations.

Example 5.11 Suppose

sec θ = 2.

Find all values of θ.

Solution We know

sec θ = 2 implies cos θ =
1

2
.

Because cos(π/3) = 1/2, the reference angle is π/3. Cosine is
positive when θ lies in quadrant I or IV. Hence, the solutions for
0 ≤ θ < 2π are

θ =
π

3
and θ =

5π

3
.

Since secant is periodic with period 2π, any integer multiple of 2π
added to either result will produce 1/2. Thus, the solutions are

θ =
π

3
+ 2πn and θ =

5π

3
+ 2πn

for n = 0, 1,−1, 2,−2, . . .. ■

124



Example 5.12 Solve for θ.

sin(3θ) = −
√
2

2
.

Suppose 0 ≤ θ < 2π.

Solution If 0 ≤ θ < 2π, then 0 ≤ 3θ < 6π. Using what we know
about the unit circle, the solutions for 3θ in the interval [0, 2π)
are the values such that 3θ = 5π/4 and 3θ = 7π/4. To find the
solutions in the interval [2π, 6π) note that adding 2π = 8π/4 to
a previous solution produces another solution, as long as the sum
remains in the interval. Using this insight, we have

3θ =
5π

4
,
7π

4
,
13π

4
,
15π

4
,
21π

4
, and

23π

4

are the values of 3θ in the interval [0, 6π) which satisfy the equation.
Dividing by 3 yields our solutions:

θ =
5π

12
,
7π

12
,
13π

12
,
5π

4
,
7π

4
, and

23π

12
.

■

Definition 5.8

• The function f is even if

f(−x) = f(x).

• The function f is odd if

f(−x) = −f(x).
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Proposition 5.4 (Even and Odd Identities)

(i) The function sin θ is odd, so

sin(−θ) = − sin θ.

(ii) The function cos θ is even, so

cos(−θ) = cos θ.

(iii) The function tan θ is odd, so

tan(−θ) = − tan θ.

(iv) The function sec θ is even, so

sec(−θ) = sec θ.

(v) The function csc θ is odd, so

csc(−θ) = − csc θ.

(vi) The function cot θ is odd, so

cot(−θ) = − cot θ.

x

y

•

(︂
cos θ, sin θ

)︂

θ

•(︂
cos(−θ), sin(−θ)

)︂
−θ

Proof Examination of the unit circle and the definitions of sine
and cosine leads us to conclude that sine and cosine are odd and
even, respectively. So, (i) and (ii) hold.

We will prove (iii) and (iv), and leave the rest as exercises.
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(iii)

tan(−x) =
sin(−x)

cos(−x)

=
− sinx

cosx
= − tanx.

(iv)

sec(−x) =
1

cos(−x)

=
1

cosx
= secx.

■

Example 5.13 Evaluate (a) sin (−30◦) and (b) sec

(︃
−5π

6

)︃
.

Solution

(a) Because sine is odd,

sin (−30◦) = − sin 30◦ = −1

2
.

(b) Since secant is even,

sec

(︃
−5π

6

)︃
= sec

5π

6

= − sec
π

6

= − 1

cos(π/6)

= − 1√
3/2

= −2
√
3

3
.

■
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5.4 Finding the Values of Trigonometric
Functions

In this section, we will study how to use the value of one trigono-
metric function to find the values of the other five, e.g. we are
given sin θ and we will study how to find cos θ, tan θ, sec θ, etc.
Surprisingly, a helpful approach to solving this type of problem
is to consider where the terminal side of θ intersects a particular
circle.

Our next theorem will be of great utility throughout the rest of
this book. To understand the theorem, recall that a circle centered
at (0, 0) and of radius r > 0 has equation

x2 + y2 = r2.

Theorem 5.1 Consider the circle with equation

x2 + y2 = r2

where r > 0. Let (x, y) be a point on the circle, and suppose θ
is the standard position angle which includes (x, y) on its terminal
side. Then

• sin θ =
y

r

• cos θ =
x

r

• tan θ =
y

x

• sec θ =
r

x

• csc θ =
r

y

• cot θ =
x

y
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x

y

A

B(x, y)

•

•

x

r

y

r
1

x2 + y2 = r2

θ

Proof A quick check shows that the identities hold for (x, y) on the
x- or y-axis. Suppose the point (x, y) is contained in a quadrant.
Then construct right triangles like in the diagram above. Using
similar triangles, we have that the sides of the right triangle with
a hypotenuse of length 1 are 1/r times the lengths of the sides of
the right triangle with a hypotenuse of length r. Furthermore, the
signs in each coordinate of A and B agree because both points lie
in the same quadrant. We conclude that the terminal side of θ
intersects the unit circle at (x/r, y/r). Hence, the definitions of
sine, cosine, and tangent tell us that

sin θ =
y

r
, cos θ =

x

r
, and tan θ =

y

x
.

The other ratios follow from Proposition 5.1.

■

129



Example 5.14 Suppose

sin θ =
3

5
and sec θ < 0.

Find the values of the remaining five trigonometric functions.

Solution Because sin θ > 0 and sec θ < 0, the angle θ is in quadrant
II. Let us suppose that we have a circle of radius 5.

x

y

θ
θR

3

x

5

The Pythagorean Theorem (Theorem 2.5) tells us

x2 + 32 = 52,

which implies x = 4 or x = −4. Since our triangle is in quadrant
II, x = −4. From here, Theorem 5.1 tells us

cos θ = −4

5
, tan θ = −3

4
, sec θ = −5

4
,

csc θ =
5

3
, and cot θ = −4

3
.

■
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Example 5.15 Suppose

tanφ = −12

5
and cosφ > 0.

Find the values of the remaining five trigonometric functions.

Solution Since tanφ < 0 and cosφ > 0, the terminal side of φ lies
in quadrant IV. Suppose the signed length of the side opposite φ
is −12. Then the side adjacent has length 5.

x

y

φ φR

5

−12
r

Using the Pythagorean Theorem (Theorem 2.5) we have

r2 = 52 + (−12)2 implies r = ±13.

The hypotenuse is always positive, so r = 13. Thus, the values of
the five remaining trigonometric functions are the following.

sin θ = −12

13
, cos θ =

5

13
, sec θ =

13

5
,

csc θ = −13

12
, and cot θ = − 5

12
.

■
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5.5 Pythagorean Identities

Let us introduce some important notation. When we write

sin2 θ, cos2 θ, tan2 θ, etc.,

we mean
(sin θ)

2
, (cos θ)

2
, (tan θ)

2
, etc.,

respectively. That is, the notation sin2 θ, cos2 θ, tan2 θ, etc. means
evaluate the trigonometric function at θ and then square the result.

In contract, the notation sin θ2, cos θ2, tan θ2, etc. means square θ
and then evaluate the result.

Example 5.16 Evaluate tan2
(︂π
3

)︂
and tan

(︂π
3

)︂2
. Use a calculator

where necessary.

Solution

tan2
(︂π
3

)︂
=
(︂
tan

π

3

)︂2
=
(︂√

3
)︂2

= 3

and

tan
(︂π
3

)︂2
= tan

π2

9
≈ 1.948.

■

Theorem 5.2 (Pythagorean Identities)

For any real number θ the following equations hold whenever they
are defined.

(i) cos2 θ + sin2 θ = 1

(ii) 1 + tan2 θ = sec2 θ

(iii) 1 + cot2 θ = csc2 θ
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Proof

(i) Since the equation x2 + y2 = 1 is the unit circle, x = cos θ,
and y = sin θ, the identity

cos2 θ + sin2 θ = 1

follows due to substitution.

(ii) Let us prove
1 + tan2 θ = sec2 θ.

Consider (i) and divide both sides by cos2 θ:

1 +
sin2 θ

cos2 θ
=

1

cos2 θ

⇒ 1 +

(︃
sin θ

cos θ

)︃2

=

(︃
1

cos θ

)︃2

⇒ 1 + tan2 θ = sec2 θ.

(iii) Let us prove
1 + cot2 θ = csc2 θ.

Once again, consider (i). Divide both sides by sin2 θ:

cos2 θ

sin2 θ
+ 1 =

1

sin2 θ

⇒ 1 +

(︃
cos θ

sin θ

)︃2

=

(︃
1

sin θ

)︃2

⇒ 1 + cot2 θ = csc2 θ.

■
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Example 5.17 Solve

5 sinx− 2 cos2 x = 1.

Find all values of x.

Solution Our goal is to rewrite the equation so that its only
trigonometric function is sin θ. To achieve this goal, we will use
Pythagorean Identity (i) to convert cos2 θ into an expression of
sin θ. In particular, we have

cos2 θ = 1− sin2 θ.

Then we will use substitution to rewrite our equation:

5 sinx− 2 cos2 x = 5 sinx− 2(1− sin2 x) = 2 sin2 x+ 5 sinx− 2.

It follows that

2 sin2 x+ 5 sinx− 3 = 0 implies (2 sinx− 1)(sinx+ 3) = 0

So,

sinx =
1

2
or sinx = −3.

The latter is an impossibility because sine is the y-coordinate on
the unit circle and points on the unit circle have a y-coordinates
between −1 and 1, inclusive. The equation

sinx =
1

2

has solutions x = π/6 and x = 5π/6 for 0 ≤ x < 2π. Since sine is
periodic with period 2π any integer multiple of 2π added to either
result is also a solution. Thus,

x =
π

6
+ 2πn or x =

5π

6
+ 2πn

for n = 0, 1,−1, 2,−2, . . .. ■
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5.6 Verifying Identities

In this section, we will verify trigonometric identities. This requires
knowledge of the identities we have already discussed. We suggest
readers review the Reciprocal Identities (Proposition 5.1), the peri-
ods of the trigonometric functions (Proposition 5.3), the Even and
Odd Identities (Proposition 5.4), and the Pythagorean Identities
(Theorem 5.2). They will be used frequently within this section
and the corresponding exercises.

When you are asked to verify an identity consider one side of the
equation and perform operations on it until the expression is iden-
tical to the other side of the equation.

Example 5.18 Verify the identity.

cos(−θ) tan(−θ) = − sin θ.

Solution We know that cosine is even and tangent is odd, so
cos(−θ) = cos θ and tan(−θ) = − tan θ. Furthermore,

tan θ =
sin θ

cos θ
.

Let us start with the left side and work our way to the right.

cos(−θ) tan(−θ) = cos θ
(︂
− tan θ

)︂
= − cos θ · sin θ

cos θ

= −cos θ

1
· sin θ
cos θ

= − sin θ

1
= − sin θ.

■
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Example 5.19 Verify the identity.

cos2 x

1− sinx
= 1 + sinx.

Solution We will start on the left side, and use the Pythagorean
Identity

cos2 x = 1− sin2 x.

To do this we will multiply the top and bottom of the ratio by
1 + sinx and use the difference of two squares formula:

cos2 x

1− sinx
=

cos2 x

1− sinx
· 1 + sinx

1 + sinx

=
cos2 x(1 + sinx)

1− sin2 x

=
cos2 x(1 + sinx)

cos2 x
= 1 + sinx.

■

Formulating an appropriate procedure to verify an identity is some-
times elusive. When this is the case, a good “rule-of-thumb” is to
convert the trigonometric expressions into a more familiar form,
e.g. converting the expression into one of sine and cosine.
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Example 5.20 Verify the identity.

cosα+ secα sin2 α = secα.

Solution

cosα+ secα sin2 α = cosα+

(︃
1

cosα

)︃
sin2 α

= cosα+
sin2 α

cosα

=
cos2 α

cosα
+

sin2 α

cosα

=
cos2 α+ sin2 α

cosα

=
1

cosα
= secα.

■
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5.7 Exercises

* Exercise 1

Find the quadrant or axis in
which each point lies.

(a) A(0, 4)

(b) B

(︃
5,−30

7

)︃
(c) C(3, 1)

(d) D (−4, 0)

(e) E(1,−1.5)

(f) F (−π, 4)

(g) G(−1,
√
3)

(h) H

(︄
−
√
2

2
,−

√
2

2

)︄

* Exercise 2

Determine the quadrant or axis
in which each standard position
angle lies.

(a) 45◦

(b)
4π

3

(c) 300◦

(d)
7π

6

(e) 150◦

(f)
π

2

(g) 315◦

(h) π

** Exercise 3

Find the point on the unit circle
corresponding to θ =

(a) 45◦

(b)
π

3

(c) 210◦

(d) 0

(e)
7π

4

(f) 120◦

(g) π

(h) 30◦

(i)
3π

4

(j) 270◦

** Exercise 4

Determine the degree measure
of the standard position angle
α corresponding to each point
on the unit circle. Assume that
0 ≤ α < 360◦.

(a)

(︄√
3

2
,
1

2

)︄

(b)

(︄
1

2
,

√
3

2

)︄
(c) (0, 1)

(d)

(︄
−
√
2

2
,−

√
2

2

)︄
(e) (0,−1)

(f)

(︄√
3

2
,−1

2

)︄
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** Exercise 5

Find the radian measure of the
standard position angle β corre-
sponding to each point on the
unit circle. Suppose 0 ≤ β < 2π.

(a)

(︄√
2

2
,

√
2

2

)︄

(b) (1, 0)

(c) (−1, 0)

(d)

(︄
−1

2
,−

√
3

2

)︄

(e)

(︄
−
√
3

2
,
1

2

)︄

(f)

(︄√
2

2
,−

√
2

2

)︄

* Exercise 6

Use the unit circle to find follow-
ing. Some values are undefined.

(a) cos 45◦

(b) tan 30◦

(c) tan 90◦

(d) sec 180◦

(e) sin 270◦

(f) csc 60◦

(g) cot 90◦

(h) sin 0

* Exercise 7

Use the unit circle to find the
following. Some values are un-
defined.

(a) sin
π

3

(b) tan
3π

2

(c) cos
π

3

(d) sec
π

4

(e) tanπ

(f) sec
π

6

(g) csc
π

3

(h) cotπ

** Exercise 8

Solve for θ where 0 ≤ θ < 360◦.

(a) sin θ = 1

(b) cos θ + 1 = 0

(c) tan θ − 1 = 0

(d) cos θ =

√
3

2

(e) csc θ =
2
√
3

3

(f) tan θ = −
√
3
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** Exercise 9

Solve for φ where 0 ≤ φ < 2π.

(a) cosφ = 0

(b) 2 sinφ− 1 = 0

(c) 3 tanφ = −
√
3

(d) 1
2 secφ = 1

(e) cotφ+ 1 = 2

(f) 3 cscφ = −6

** Exercise 10

Determine the quadrant in
which the terminal side of θ lies.

(a) sin θ > 0 and cos θ > 0

(b) cos θ > 0 and tan θ < 0

(c) sin θ < 0 and sec θ < 0

(d) csc θ > 0 and sec θ < 0

(e) sin θ < 0 and cot θ < 0

(f) sec θ < 0 and cot θ > 0

** Exercise 11

State whether the terminal side
of φ lies in the positive x-axis,
positive y-axis, negative x-axis,
or negative y-axis.

(a) cscφ is undefined and
cosφ > 0.

(b) tanφ is undefined and
cscφ > 0.

(c) cotφ is undefined and
secφ < 0.

(d) secφ is undefined and
sinφ < 0.

** Exercise 12

Compute the reference angle.

(a) 147◦

(b) 314◦

(c) 29◦

(d) 307◦

(e) 217◦

(f) 201◦

(g) 316◦

(h) 118◦

** Exercise 13

Find the reference angle.

(a)
5π

6

(b)
11π

12

(c)
19π

10

(d)
3π

4

(e)
9π

8

(f)
11π

6

(g)
4π

3

(h)
13π

9

(i) 5

(j) 1

** Exercise 14

Evaluate.

(a) sin 30◦

(b) sin 150◦

(c) sin 210◦

(d) sin 330◦
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** Exercise 15

Evaluate.

(a) cos
π

4

(b) cos
3π

4

(c) cos
5π

4

(d) cos
7π

4

** Exercise 16

Evaluate.

(a) tan 60◦

(b) tan 120◦

(c) tan 240◦

(d) tan 300◦

** Exercise 17

Use reference angles to evaluate.
Some expressions are undefined.

(a) tan
5π

6

(b) cos
3π

2

(c) sin
11π

6

(d) tan
π

2

(e) csc
7π

4

(f) cot
2π

3

(g) csc
7π

6

(h) cot
3π

4

(i) sin
5π

4

(j) cos
2π

3

** Exercise 18

Use reference angles to evaluate.
Some expressions are undefined.

(a) sin 120◦

(b) tan 315◦

(c) csc 315◦

(d) cos 270◦

(e) csc 240◦

(f) sec 210◦

(g) cos 150◦

(h) tan 330◦

(i) sin 225◦

(j) cos 120◦

** Exercise 19

Suppose α is an acute angle
of degree measure such that
the terminal side of α inter-
sects the unit circle at the point
(4/5, 3/5).

(a) Find the values of the six
trigonometric functions at
α.

(b) What are the values of
the six trigonometric func-
tions at 360◦ − α?

(c) Compute the values of
the six trigonometric func-
tions at α+ 180◦.

(d) Evaluate the six trigono-
metric functions at 180◦−
α.
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** Exercise 20

Assume β is an acute angle
of radian measure such that
the terminal side of β inter-
sects the unit circle at the point
(5/13, 12/13).

(a) Find the values of the six
trigonometric functions at
β.

(b) What are the values of
the six trigonometric func-
tions at π − β?

(c) Compute the values of
the six trigonometric func-
tions at 2π − β.

(d) Evaluate the six trigono-
metric functions at β + π.

*** Exercise 21

The terminal side of θ lies
in quadrant IV and intersects
the unit circle at the point
(8/17,−15/17). Compute each
of the following.

(a) sin θ

(b) cot θ

(c) cos(2π − θ)

(d) sec(θ − π)

(e) csc(θ − π)

(f) cos(3π − θ)

** Exercise 22

Compute each of the following.
Some expressions are undefined.

(a) cot(−180◦)

(b) tan 870◦

(c) csc 585◦

(d) sin 630◦

(e) tan(−135◦)

(f) sin(−810◦)

(g) cot(−510◦)

(h) sec(−1050◦)

** Exercise 23

Calculate each of the following.
Some expressions are undefined.

(a) cos 2π

(b) cos

(︃
−9π

2

)︃

(c) csc

(︃
−11π

3

)︃

(d) sin
7π

2

(e) sin
23π

6

(f) csc

(︃
−13π

4

)︃
(g) sec

(︃
−5π

6

)︃
(h) cot

(︃
−9π

4

)︃

** Exercise 24

Prove Proposition 5.4 (v) and
(vi).

** Exercise 25
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The domain of a function is the
set of inputs of a function, and
the range of a function is the set
of outputs of the function. De-
termine the domain and range of
f .

(a) f(x) = sinx

(b) f(x) = cosx

(c) f(x) = tanx

(d) f(x) = cscx

(e) f(x) = secx

(f) f(x) = cotx

** Exercise 26

Determine the values of θ which
satisfy the equation.

(a) tan θ = 0

(b) −2 cos θ = 1

(c) 3 cot2 θ = 1

(d) sin2 θ − 2 sin θ = −1

** Exercise 27

Solve for φ.

(a) 2 sin 3φ = 1

(b) − tan 2φ = 1

(c) 3 csc2 πφ = 4

(d) sec2(5φ)−3 sec(5φ)+2 = 0

** Exercise 28

Find all values of α within the
interval [0, 360◦) which satisfy
the equation.

(a) tan(−α) =
√
3

(b) 3 csc 3α = 3
√
2

(c) cot2
α

2
= 1

(d) 2 sin2(2α)− 9 sin(2α) = 5

** Exercise 29

Solve for β. Assume 0 ≤ β <
2π.

(a) 2 cos(−β) =
√
3

(b) sec2
β

3
− 2 = 0

(c) tan2
πβ

3
= 3

(d) 3 csc2 πβ−5 cscπβ+2 = 0

** Exercise 30

Find all values of θ in the inter-
val (−180◦, 180◦] which satisfy
the equation.

(a) 6 sin(−θ) = 3
√
2

(b) csc2
θ

2
− 2 = 0

(c) cot
5θ

4
+
√
3 = 0

(d) tan2
3θ

2
− 1 = 0

** Exercise 31
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Determine the values of the re-
maining five trigonometric func-
tions.

(a) sinα = −4/5 and cosα <
0

(b) cotβ = 15/8 and secβ > 0

(c) cos γ = 5/13 and cot γ < 0

(d) tan θ = −24/7 and sec θ <
0

(e) cscφ is undefined and
secφ < 0

** Exercise 32

Solve for α.

(a) 2 cos2 α− sinα = 1

(b) 3 tan2 α = 4 secα+ 1

(c) 5 csc4 α−9 cot2 α−11 = 0

** Exercise 33

Find all values of β.

(a) cos4(3β) + 3 sin2(3β) = 1

(b) tan3(2β) + sec2(−2β) =
3 tan(2β) + 4

(c) csc2(5β) cot(−5β) =
csc2(5β)

** Exercise 34

(i) 1

(ii) tanx

(iii) − cotx

(iv) secx

Match the expressions above
with the equivalent expressions
below. Some options may be
used more than once.

(a)
sec2 x− 1

tanx

(b) sin(x) sec(−x)

(c) cos(−x) csc(−x)

(d) cosx secx

(e) sin(−x) csc(−x)

(f)
tanx

sinx

** Exercise 35

Verify each identity.

(a) sin (2π − α) = − sinα

(b) cos (360◦ − β) = cosβ

(c) tan (2π − γ) = − tan γ

** Exercise 36

Verify the identity.

tan (θ + π)

sin θ
= sec θ

** Exercise 37

Verify each identity.

(a) cos2 α− sin2 α = 2 cos2 α− 1

(b) cos2 α− sin2 α = 1− 2 sin2 α

** Exercise 38

Verify each identity.
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(a)
sin2 θ

1 + cos θ
= 1− cos θ

(b)
cos2 α

1 + sinα
= 1− sinα

(c)
sec2 φ− 1

tanφ
= tanφ

(d) tan β
1−cos β = secβ cscβ+cscβ

** Exercise 39

Verify each identity.

(a) cos2 x−sin x(− sin x)
cos2 x = sec2 x

(b) − sin2(−x)−cos2 x
sin2 x

= − csc2 x

** Exercise 40

Verify each identity.

(a) secx+ tanx =
1

secx− tanx

(b) cscx+ cotx =
1

cscx− cotx

** Exercise 41

Verify the identity.

sin θ + sin θ tan2 θ = sec θ tan θ
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Chapter 6

Graphing
Trigonometric
Functions

In this chapter, we will learn to graph the six trigonometric func-
tions on the xy-plane. We assume a thorough understanding of
Chapter 5. Some knowledge of Appendix C—which addresses shifts,
stretches, and compressions—is helpful, but will not be directly uti-
lized. We will not use calculators.

6.1 Graphing Sine and Cosine

We want to graph functions of the form

f(x) = A sin (Bx+ C) +D and g(x) = A cos (Bx+ C) +D.

Definition 6.1 A parent function is considered to be the most
basic within a family of functions.

We like to think of f(x) = sinx and g(x) = cosx as the parent func-
tions of their respective family of functions. From this perspective,
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the constants A, B, C, and D modify the parent functions. As
a result, it is helpful to obtain an understanding of the graphs of
f(x) = sinx and g(x) = cosx.

f(x) = sinx

−1

−1/2

1/2

1

π
2

π 3π
2

2π
x

y

g(x) = cosx

−1

−1/2

1/2

π
2

π 3π
2

2π
x

y

Proposition 5.3 tells us that sine and cosine are periodic with period
2π. This means that the behavior of f(x) = sinx and g(x) =
cosx, within the interval [0, 2π], is repeated in subsequent intervals,
so graphing more periods of either function is simply a matter of
recognizing the pattern.

Definition 6.2

• The amplitude of f is

max{f(x)} −min{f(x)}
2

.

• The phase shift of a periodic function f is how much its
principal period is shifted left or right on a graph relative to
the parent function of f .
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Proposition 6.1 Suppose we have a function of the form

f(x) = A sin(Bx+ C) +D or g(x) = A cos(Bx+ C) +D,

where B > 0.

(i) The amplitude of the function is |A|.

(ii) The graph has period
2π

B
.

(iii) The neutral vertical position of its graph is y = D; this is
called the vertical shift.

(iv) The phase shift is

−C

B
.

Note: a positive phase shift corresponds to a rightward shift
and a negative phase shift corresponds to a leftward shift.

Proposition 6.1 will be used extensively to graph functions, but
plotting a small number of points is also helpful. We will introduce
a protocol to find five useful points.

Let f(x) = A sin (Bx+ C)+D or g(x) = A cos (Bx+ C)+
D, where B > 0.

• Start at an x-coordinate equal to the value of the
phase shift, i.e. start at

x = −C

B
.

Evaluate to find the y-coordinate.

• To find subsequent x-coordinates, add one-fourth
the period to the previous x-coordinate. That is,
add

2π/B

4
=

π

2B

to the previous x-coordinate. Evaluate the new
x-value to find the corresponding y-value.
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• Stop after you have found the point whose x-coordinate
is equal to the phase shift plus the period. That
is, stop after the point corresponding to

x = −C

B
+

2π

B
.

This protocol gives five points. The y-coordinate of the
last point should be the same as the first.

Example 6.1 Graph one period of

f(x) = 2 sin(3x− π) + 1.

Solution Proposition 6.1 gives us the table below.

Amplitude: |2| = 2

Period:
2π

3

Vertical shift: 1

Phase shift: − (−π)

3
=

π

3

Let us plot some points. The first x-coordinate is equal to the
phase shift π/3 and we increase each subsequent x-coordinate by
an increment of

2π/3

4
=

π

6
.
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x f(x)

π

3
2 sin(0) + 1 = 1

3π

6
=

π

2
2 sin

(︂π
2

)︂
+ 1 = 3

4π

6
=

2π

3
2 sin(π) + 1 = 1

5π

6
2 sin

(︃
3π

2

)︃
+ 1 = −1

π 2 sin(2π) + 1 = 1

Hence, we have the following graph.

−1

2

3

π
6

π
3

π
2

2π
3

5π
6

π

•

•

•

•

•

x

y

y = 1

■
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Example 6.2 Graph two periods of

g(x) = −2− 1

2
cos

(︃
3πx+ π

4

)︃
.

Solution Let us rewrite this into a more familiar form:

g(x) = −2− 1

2
cos

(︃
3πx+ π

4

)︃
= −1

2
cos

(︃
3π

4
x+

π

4

)︃
− 2.

Proposition 6.1 tells us the key features of g’s graph.

Amplitude:

⃓⃓⃓⃓
−1

2

⃓⃓⃓⃓
=

1

2

Period:
2π

3π/4
=

8

3

Vertical shift: −2

Phase shift: − π/4

3π/4
= −1

3

Let us plot some points. The first point has an x-coordinate of
−1/3 and subsequent x-values will be increased in increments of

8/3

4
=

2

3
.
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x g(x)

−1

3
−1

2
cos(0)− 2 = −2 1

2

1

3
−1

2
cos
(︂π
2

)︂
− 2 = −2

3

3
= 1 −1

2
cos(π)− 2 = −1 1

2

5

3
−1

2
cos

(︃
3π

2

)︃
− 2 = −2

7

3
−1

2
cos (2π)− 2 = −2 1

2

After we plot the points and graph the first period, we use the
pattern to graph the second period.

−3

−1

− 1
3

1
3

1 5
3

7
3

3 11
3

13
3

5

•

•

•

•

• •

x

y

y = −2

■

Proposition 6.1 assumes that B > 0. For B < 0, we can utilize
Proposition 5.4 which says that sine is odd and cosine is even.
This allows us to change the sign of the coefficient in front of x.
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Example 6.3 Graph one period of

h(x) = 2 sin (−x+ 45◦) .

Solution Sine is odd, which implies

2 sin (−x+ 45◦) = 2 sin
(︂
− (x− 45◦)

)︂
= −2 sin (x− 45◦) .

Then we utilize Proposition 6.1.

Amplitude: |−2| = 2

Period:
360◦

1
= 360◦

Vertical shift: 0

Phase shift: −−45◦

1
= 45◦

The next step is to plot points. We begin at x = 45◦ and add

360◦

4
= 90◦

to the previous x-coordinate to find the next. We stop at x = 405◦.

x h(x)

45◦ −2 sin 0 = 0

135◦ −2 sin 90◦ = −2

225◦ −2 sin 180◦ = 0

315◦ −2 sin 270◦ = 2

405◦ −2 sin 360◦ = −2
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−2

−1

1

2

90◦ 180◦ 270◦ 360◦
•

•

•

•

• x

y

■

6.2 Graphing Tangent and Cotangent

The goal of this section is to graph functions of the form

f(x) = A tan (Bx+ C) +D and g(x) = A cot (Bx+ C) +D.

Much like sine and cosine graphs, we think of A, B, C, and D
as modifying the graphs of the parent functions f(x) = tanx and
g(x) = cotx.

Tangent and cotangent are somewhat more difficult to graph be-
cause they contain vertical asymptotes.

Definition 6.3 The function h has a vertical asymptote of x = a
if h(x) goes to ±∞ as x goes to a from the left or the right. Within
sketches of graphs, asymptotes are usually denoted by dashed lines.

x

y x = 1

The graph of h to the right has a vertical
asymptote of x = 1. This is because h(x)
goes to −∞ as x goes to 1 from the left,
and h(x) goes to ∞ as x goes to 1 from the
right.
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6.2.1 Graphing Tangent

Let us consider the graph of f(x) = tanx.

−2

−1

1

2

x

yx = −π
2 x = π

2

Graphing more of f(x) = tanx is not difficult, because Proposition
5.3 tells us tangent has period π. Hence, in subsequent intervals,
the graph of tangent simply repeats its behavior.

Proposition 6.2 Suppose

f(x) = A tan (Bx+ C) +D,

where B > 0.

(i) The graph has period
π

B
.

(ii) The neutral vertical position of the graph is y = D; this is
called the vertical shift.

(iii) The phase shift of f is

−C

B
.

Note: Being shifted a negative number of units right corre-
sponds to being shifted left.
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(iv) The function f has vertical asymptotes at the solutions of

Bx+ C = −π

2
and Bx+ C =

π

2
.

Notice that we did not mentioned amplitude. The value of |A| ver-
tically compresses or stretches the graph of tangent, but it has no
maximum or minimum value. This makes the concept of amplitude
nonsensical.

Example 6.4 Determine the period, vertical shift, phase shift, and
asymptotes of the function.

f(x) = −3 tan (15◦x+ 45◦)− 7

Solution From Proposition 6.2, we know the period is

180◦

15◦
= 12,

the vertical shift is −7, and the phase shift is

−45

15
= −3.

One of the vertical asymptotes is the solution of

15◦x+ 45◦ = −90◦.

Solving yields the vertical asymptote x = −9.

Since f has period 12, this means that all the asymptotes are of
the form

x = −9 + 12n,

where n = 0, 1,−1, 2,−2, . . .. ■

Proposition 6.2 will be used extensively, but we will also plot some
points when we graph. So, we will introduce a protocol to find
three helpful points.

Suppose f(x) = A tan (Bx+ C) + D, where B > 0.
Proposition 6.2 tells us that there are vertical asymp-
totes at

Bx+ C = −π

2
and Bx+ C =

π

2
.
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• Add one-fourth the period to the x-value of the
left asymptote. That is, add

π

4B

to the solution of Bx+C = −π/2. This gives the
x-coordinate of the first point. Evaluate f at the
x-value to find the y-coordinate.

• To find the next x-coordinate, add one-fourth the
period to the previous x-coordinate. Evaluate f
at the x-value to find the y-coordinate.

• Stop before you reach the solution of

Bx+ C =
π

2
.

This protocol should give three points. Their y-coordinates
should be −A+D, D, and A+D, respectively.

Example 6.5 Graph one period of

g(x) = 2 tan
(︂x
2
+

π

3

)︂
− 4.

Solution Let us compute the vertical asymptotes. Using Proposi-
tion 6.2, the vertical asymptotes are the solutions of

x

2
+

π

3
= −π

2
and

x

2
+

π

3
=

π

2
.

Hence, we have vertical asymptotes

x = −5π

3
and x =

π

3
.

Using the above, and some other parts of Proposition 6.2 give us
our table.
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Vertical shift: −4

Period:
π

1/2
= 2π

Phase shift: −π/3

1/2
= −2π

3

Asymptotes: x = −5π

3
and x =

π

3

Let us plot some points. Consecutive x-coordinates will be in-
creased in increments of

2π

4
=

π

2
.

The first point has an x-coordinate of

−5π

3
+

π

2
= −7π

6
.

x g(x)

−7π

6
2 tan

(︂
−π

4

)︂
− 4 = −6

−4π

6
= −2π

3
2 tan 0− 4 = −4

−π

6
2 tan

(︂π
4

)︂
− 4 = −2
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We have obtained enough information to graph one period of g.

−7

−5

−3

−1

1
− 7π

6 − 2π
3 −π

6
x

y

x = − 5π
3

x = π
3

•

•

•

■
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6.2.2 Graphing Cotangent

Consider the graph of f(x) = cotx.

−2

−1

1

2

π
2

x

y x = π

Proposition 5.3 tells us that cotangent has period π. Hence, the
pattern within the interval (0, π) is repeated in subsequent periods.

Proposition 6.3 Suppose

f(x) = A cot(Bx+ C) +D,

where B > 0.

(i) The graph has period
π

B
.

(ii) The neutral vertical position of the graph is y = D; this is
called the vertical shift.

(iii) The phase shift of f is

−C

B
.

Note: being shifted a negative number of units right corre-
sponds to being shifted left.

(iv) There are vertical asymptotes at

Bx+ C = 0 and Bx+ C = π.
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We will use some point plotting, along with Proposition 6.3, to
graph cotangent. This makes a protocol for finding points neces-
sary. Ours gives three useful points.

Let f(x) = A cot (Bx+ C) +D, where B > 0. Propo-
sition 6.3 tells us that f has vertical asymptotes at

Bx+ C = 0 and Bx+ C = π.

• Add one-fourth the period to the x-value of the
left asymptote. That is, add

π

4B

to the solution of Bx + C = 0. This gives the
x-coordinate of the first point. Evaluate f at the
x-value to find the y-coordinate.

• To find the next x-coordinate, add one-fourth the
period to the previous x-coordinate. Evaluate f
at the x-value to find the y-coordinate.

• Stop before you reach the x-value of the right asymp-
tote. That is, stop before the x-value is the solu-
tion of

Bx+ C = π.

This procedure gives three points. Their y-coordinates
should be A+D, D, and −A+D, respectively.

Example 6.6 Graph two periods of

f(x) =
1

2
cot (180◦x+ 135◦)− 1.

Solution Using Proposition 6.3, the asymptotes within the first
period are the solutions of

180◦x+ 135◦ = 0 and 180◦x+ 135◦ = 180◦.

Solving these yields

x = −3

4
and x =

1

4
.
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The period is
180◦

180◦
= 1.

We need another asymptote, because we want to graph two peri-
ods of cotangent. Using the fact that cotangent has period 1, we
conclude

x =
1

4
+ 1 =

5

4

is another asymptote.

We have the following table.

Period:
180◦

180◦
= 1

Vertical shift: −1

Phase shift: −135◦

180◦
= −3

4

Asymptotes: x = −3

4
, x =

1

4
, and x =

5

4

Next, we plot points within the first period. We increase subse-
quent x-coordinates by an increment 1/4, and we start at

x = −3

4
+

1

4
= −1

2
.

x f(x)

− 2
4 = − 1

2
1
2 cot (45

◦)− 1 = − 1
2

− 1
4

1
2 cot (90

◦)− 1 = −1

0 1
2 cot (135

◦)− 1 = −1 1
2

This enough to graph one period of f ’s graph. The next period is
not difficult to draw, because we have the vertical asymptote x =
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5/4 and we can determine the behavior of the graph by analyzing
the previous period.

−3

−2

−1

1

2

− 1
2 − 1

4
1
2

3
4 1

x

y x = 5
4x = − 3

4 x = 1
4

•
•

•

■

Example 6.7 A cotangent graph has vertical asymptotes x = 1
and x = 7, no vertical shift, and contains the point (5/2, 4). Find
the equation of the corresponding cotangent function.

Solution Suppose

g(x) = A cot (Bx+ C) +D

is the function. There is no vertical shift which implies D = 0.
Since x = 1 and x = 7 are vertical asymptotes, the period is

7− 1 = 6.

Hence, Proposition 6.3 tells us

π

B
= 6 implies B =

π

6
.

For cotangent functions, the phase shift is the same as the left
asymptote within the principal period. So, it must be 1. Using
Proposition 6.3 again, it follows that

− C

π/6
= 1 implies C = −π

6
.
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As of now, we have

g(x) = A cot
(︂π
6
x− π

6

)︂
.

To find A, we will plug in 5/2, because we know g(5/2) = 4:

g

(︃
5

2

)︃
= A cot

(︃
π

6
· 5
2
− π

6

)︃
= A cot

π

4
= A(1)

= A.

We conclude A = 4.

Thus, our function is

g(x) = 4 cot
(︂π
6
x− π

6

)︂
.

■

6.3 Graphing Secant and Cosecant

In this section, we will learn to graph secant and cosecant. These
graphs rely on the skills from Section 6.1, so we recommend that the
reader masters those concepts before they continue. In particular,
because

secx =
1

cosx
and cscx =

1

sinx
,

the reader must understand how to graph cosine to graph secant,
and how to graph sine to graph cosecant.
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6.3.1 Graphing Secant

Let us begin with an analysis of the graph of f(x) = secx.

−3

−2

2

3

π 2π
x

y

y = 1

y = −1

x = 3π
2x = π

2

Each branch of secant is a U-shaped curve. Secant has asymptotes
at x = π/2 and x = 3π/2. From Proposition 5.3, we know that
secant has period 2π. As a result, we can graph more periods easily.

We now introduce a procedure to graph secant.

Let
f(x) = A sec (Bx+ C) +D.

1. Lightly sketch the graph of

y = A cos (Bx+ C) +D.

2. Draw vertical asymptotes where the cosine graph
intersects the line y = D.

3. Draw horizontal dashed lines y = A+D and y =
−A+D. These values correspond to the maximum
and minimum y-values of y = A cos (Bx+ C)+D.

4. Draw the graph of

f(x) = A sec (Bx+ C) +D.

Each U- shaped branch touches the cosine graph at
its vertex and opens away from the cosine graph.

166



This strategy is based on the fact that secant is the reciprocal
function of cosine.

Example 6.8 Graph one period of

f(x) = −2− 1

2
sec

(︃
3πx+ π

4

)︃
.

Solution The first step is to graph

y = −2− 1

2
cos

(︃
3πx+ π

4

)︃
= −1

2
cos

(︃
3π

4
x+

π

4

)︃
− 2.

Using Section 6.1, and in particular Example 2, yields (a). Then
we draw horizontal dashed lines at

y = −1

2
− 2 = −5

2
and y =

1

2
− 2 = −3

2
.

Vertical asymptotes are drawn at

x =
1

3
and x =

5

3
,

because this is where the cosine graph intersects y = −2. This
gives (b).

−3

−1

1 2
x

y

• •

(a)

−3

−1

1 2
x

y

• •

y = − 3
2

y = − 5
2

x = 1
3 x = 5

3

(b)
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All that is left is to draw secant’s branches. The branches have ver-
tices of (−1/3,−5/2), (1,−3/2), and (−7/3,−5/2), because those
are the points where cosine intersects the dashed lines. The rest of
each U-shape follows due to the position of the asymptotes.

−3

−1

− 1
3 1

7
3

x

y

y = − 3
2

y = − 5
2

x = 1
3 x = 5

3

•

•

•

■

Note that only the darkened curves above is the se-
cant graph; the rest is a graphing aid. So, plugging

f(x) = −2− 1

2
sec

(︃
3πx+ π

4

)︃
into a graphing calculator results in a graph like
the one on the right.

168



6.3.2 Graphing Cosecant

Consider the graph of f(x) = cscx.

−3

−2

2

3

π
2

3π
2

x

y

y = 1

y = −1

x = π x = 2π

Notice that the principal period of cosecant has two U-shaped
branches. Its vertical asymptotes occur at x = 0, x = π, and
x = 2π. Graphing more branches of cosecant is a matter of emu-
lating cosecant’s behavior in the interval (0, 2π). This is because
of Proposition 5.3 which says cosecant’s period is 2π.

Our procedure to graph

f(x) = A csc(Bx+ C) +D

is nearly identical to secant’s which is described on page 166. Sim-
ply replace y = A cos(Bx + C) +D with y = A sin(Bx + C) +D,
and draw the U-shaped branches based on the latter’s graph.

Example 6.9 Graph two periods of

g(x) = 2 csc(3x− π) + 1.

Solution In Example 1 of Section 6.1, we graphed

y = 2 sin(3x− π) + 1
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for π/3 ≤ x ≤ π, which was one period.

We need two periods of the sine graph to obtain two periods of
cosecant’s graph. To keep the graph close to the y-axis, we will
graph y = 2 sin(3x − π) + 1 for the period corresponding −π/3 ≤
x ≤ π/3. The result is (a).

We draw dashed horizontal lines at

y = 2 + 1 = 3 and y = −2 + 1 = −1.

Vertical asymptotes are drawn at

x = −π

3
, x = 0, x =

π

3
, x =

2π

3
, and x = π,

because this is where y = 2 sin(3x − π) + 1 intersects y = 1. The
result is (b).

−1

1

2

3

−π
3

π
3

2π
3

π
x

y

• •

(a)

1

2

x

y

• •

y = 3

y = −1

x = −π
3

x = π
3

x = 2π
3

x = π

(b)

We are ready to graph cosecant. The vertices for the branches are
at (−π/6, 3), (π/6,−1), (π/2, 3), and (5π/6,−1). The U-shaped
branches follow from the asymptotes.
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−3

−2

1

2

4

5

−π
6

π
6

π
2

5π
6

x

y

y = 3

y = −1

x = π
3 x = 2π

3 x = πx = −π
3

• •

•

•

•

•

■

6.4 Miscellaneous Graphing Problems

In this section, we will examine some less essential graphing prob-
lems. We will study them for fun as well as the fact that working a
few challenging problems is important for students’ mathematical
development.

Example 6.10 Graph

f(x) = x sinx.

Solution Since

−1 ≤ sinx ≤ 1 implies − |x| ≤ x sinx ≤ |x|,

the graph of f oscillates between y = −|x| and y = |x|.
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Plotting points for x in the interval [−π, π] is helpful because sine
has period 2π and the sign change of x at x = 0 affects the look
of the graph. We can then use the behavior we observe from our
points to graph more of f .

Our first point will have an x-coordinate of −π and subsequent
x-coordinates will be 2π/4 = π/2 greater than their previous x-
coordinate.

x f(x)

−π −π sin(−π) = 0

−π

2
−π

2
sin
(︂
−π

2

)︂
=

π

2

0 0 sin 0 = 0

π

2

π

2
sin

π

2
=

π

2

π π sinπ = 0

− 3π
2

−π

−π
2

π
2

π

3π
2

− 3π
2

−π −π
2

π
2

π 3π
2

x

y

f(x) = x sinx

y = −|x|

y = |x|

•

•

•

•

•

■
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Example 6.11 Graph two periods of

g(x) = |tanx| .

Solution We will use the graph of y = tanx as an aid. When
tanx ≥ 0, the absolute value does nothing so we leave the graph
of y = tanx unaltered. When tanx < 0, the absolute value makes
g(x) positive so we reflect the graph of y = tanx about the x-axis.

The graph of g(x) = |tanx| is drawn in black, and the graph of
y = tanx is drawn in gray.

−4

−3

−2

−1

1

2

3

4

π
x

y

x = −π
2 x = π

2 x = 3π
2

■
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Example 6.12 Determine the number of times y = x intersects
y = cos 35x for x > 0.

Solution Let us examine one period, and make an inference about
the general pattern.

2π
35

x

y

During the first quarter of each period cosine goes from 1 to 0, and
in the fourth quarter cosine goes from 0 to 1. When 0 ≤ x ≤ 1,
this implies that the graphs of y = cos 35x and y = x intersect once
in the first and fourth quarter of each period. When x > 1, y = x
will never intersect y = cos 35x, because −1 ≤ cos 35x ≤ 1.

As a result, we can find the number of positive intersects by com-
puting the number of periods of y = cos 35x within the interval
[0, 1]. The period of y = cos 35x is 2π/35. It follows that there are

1

2π/35
=

35

2π
≈ 5.570

periods between x = 0 and x = 1. Since 5.25 < 5.570 < 5.75,
y = cos 35x and y = x intersect

2(5) + 1 = 11

times. ■
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6.5 Exercises

* Exercise 1

Determine the amplitude, pe-
riod, vertical shift, and phase
shift.

(a) y = 3 sinπx

(b) y = −1

2
cos(x− 30◦) + 1

(c) y = −2 sin (2π (x− 1))−π

(d) y = 1− cos (x− π)

(e) y = −2 sin
(︂x
2
+ π

)︂

(f) y =

3 cos

(︃
x+ π

3

)︃
− 7

4

** Exercise 2

Write a corresponding function.

(a) A sine function begins
each period by decreasing
from its neutral position.

Amplitude: 3
Period: 6

Vertical shift: 0
Phase shift: 2

(b) A cosine function begins
each period at its maxi-
mum.

Amplitude: π
Period: π/2

Vertical shift: −2
Phase shift: −π/6

** Exercise 3

Graph one period.

(a) y = 2 sinπx

(b) y = 1− cos (180◦x− 30◦).

(c) y = −3

4
sin
(︂π
6
(x− 2)

)︂
−

5

(d) y = −6 cos
(︂x
4
+

π

10

)︂
+ 1

(e) y = − sin (90◦ + x) + 1

(f) y = 2 cos

(︃
π − x

6

)︃
(g) y = sin

(︃
π − 2x

3

)︃
+ 1

(h) y = 7− cos(−πx)

** Exercise 4

Graph two periods.

(a) y = −3 sin 60◦x

(b) y = 5− 1
2 cos 5x

(c) y = 2− sin

(︃
x− π

3

)︃
(d) y = 6 cos

(︃
x+ 18◦

5

)︃
(e) y = − sin

(︂
−x+

π

4

)︂
+ 1

(f) y = −3

4
cos

(︃
π − x

4

)︃
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** Exercise 5

Find A, B, and C such that . . .

(a) cosx = A sin(Bx+ C).

(b) sinx = A cos(Bx+ C).

* Exercise 6

Determine the period, vertical
shift, phase shift, and asymp-
totes.

(a) y = −3 tan
(︂x
2
+ 45◦

)︂

(b) y =
3π

2
− cot (17◦x)

(c) y =

5 tan

(︃
x+ π

3

)︃
+ 2

π

(d) y = −3 cot(18◦x+15◦)+1

(e) y =
3

4
− tan (x− π)

(f) y = −4 cot

(︃
πx− 3

2

)︃
+ 1

** Exercise 7

Write a corresponding function.

(a) A tangent function has
vertical asymptotes of x =
−1 and x = 9. Its vertical
shift is 1, and it contains
the point (3/2,−2).

(b) A cotangent function with
vertical asymptotes x = 0
and x = 5π. Its vertical
shift is −3, and it contains
the point (5π/4,−7).

** Exercise 8

Graph one period.

(a) y = −2 tan 60◦x

(b) y =
π

2
− π cot 2x

(c) y = −3 tan
(︂ π

10
(x− 7)

)︂
−

5

(d) y = −3 cot
(︂x
5
− 20◦

)︂
+ 1

(e) y = − tan (60◦ − x) + 1

(f) y = π cot

(︃
π − x

3

)︃
(g) y = tan (15◦ − 3x)− 1

(h) y = − cot

(︃
2π

3
(2− x)

)︃
+

2

** Exercise 9

Graph two periods.
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(a) y = −π tan
πx

6

(b) y = 2− 3

4
cot 10◦x

(c) y = 1− 1
2 tan

(︃
2x− π

4

)︃
(d) y = − cot (20◦(x+ 2)) + 3

(e) y = − tan
(︂
−x+

π

8

)︂
+ 2

(f) y = cot

(︃
π − x

6

)︃
+ 1

** Exercise 10

Find A, B, and C such that . . .

(a) cotx = A tan(Bx+ C).

(b) tanx = A cot(Bx+ C).

* Exercise 11

Determine the period, vertical
shift, phase shift, and asymp-
totes.

(a) y = 2 sec(120◦x)− 3

(b) y = −π csc
(︂
x+

π

3

)︂
+

π

6

(c) y = 1− csc (4 (x− π))

(d) y = −2 sec
(︂x
2
+ π

)︂
** Exercise 12

Write a corresponding function.

(a) A secant function has
asymptotes x = 1, x = 3,
and x = 5. Its vertical

shift is 2. The vertex of a
downward opening branch
is (2,−1).

(b) A cosecant function has
asymptotes x = π, x =
3π, and x = 5π. Its verti-
cal shift is −11π. The ver-
tex of an upward opening
branch is (4π, π/2).

** Exercise 13

Graph one period.

(a) y = −5 sec 9◦x

(b) y = csc
(︂
x+

π

2

)︂
− 5

(c) y = 2− sec

(︃
x− 2π

3

)︃
(d) y = csc

(︂ π

12
(x− 4)

)︂
+ 1.

(e) y = 2π+π sec (20◦x+ 15◦)

(f) y = −2 csc
(︂x
6
− π

18

)︂
+ 3

(g) y = − sec
(︂π
4
− x
)︂
+ 1

(h) y = 3 csc

(︃
π + x

4

)︃
** Exercise 14

Graph two periods.

(a) y = −2 sec
2x

3

(b) y = π − π

6
csc 5x
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(c) y = 3− sec

(︃
x+ π

8

)︃
(d) y = − csc

(︂π
6
(2x+ 6)

)︂
+

2.

(e) y = −2 sec
(︂
−x+

π

3

)︂
(f) y = −π

8
csc

(︃
3π − πx

4

)︃
** Exercise 15

Graph one period.

(a) y =
3 csc (x+ 17◦)− 4

5

(b) y = 4 sin

(︃
x− π

2

)︃
(c) y =

3

4
tan

(︃
x− π

3

)︃
(d) y = 3− cos 3x

(e) y = 1− cot
(︁
π
4 (x− 3)

)︁
.

(f) y = 2 sec (2π (x− 1))− 1

** Exercise 16

Graph two periods.

(a) y = 1− sin (20◦ (x− 2))

(b) y = −4 csc

(︃
x+ π

6

)︃
(c) y = 3− tan

(︃
x− 2π

3

)︃
(d) y = 1− sec (x− π)

(e) y =
1

2
cot

(︃
x+ 25◦

10

)︃

(f) y = cos (20◦x+ 30◦)− 1

** Exercise 17

Write corresponding equations
for the graphs on pages 180 and
181.

*** Exercise 18

Graph each of the following.

(a) y = x cosx

(b) y = x sinπx

(c) y = cosx+ x

(d) y = x secx

*** Exercise 19

Graph each of the following.

(a) y = |cosx|

(b) y = |cotx|

(c) y = |cscx|
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*** Exercise 20

Suppose x > 0. Determine the
number of times y = x intersects
each graph.

(a) y = sin 3x

(b) y = cos 15x

(c) y = sin 40x

(d) y = cos 85x

(e) y = tanx
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x

y

−2 2

−3

1• •

x

y

−2π 2π

−5

5

• •

(a) (b)

x

y

π
6

π
2

5π
6

1

2

3 • •
x

y

−8 −4

− 3
2

− 1
2

• •

(c) (d)

x

y

x = 1

x = 3

−1

3

•

•

•

x

yx = −135◦

x = 45◦

−1

1

•
•

•

(e) (f)
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x

yx = −π
2

x = π
6

−5

1

•

•

•

x

y

x = 2

x = 10

π

2π •

•

•

(g) (h)

x

y

x = 2

x = 6

y = 6• • x

y

y = π

y = −3π

x = −π
4

x = 3π
4

(i) (j)

x

y

y = 3π
2

y = π
2

x = 1
4

x = 7
4

• •

x

y

x = 2

x = 4

x = 6

y = −1

y = −2

(k) (l)
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Chapter 7

Using Identities

In this chapter, we will examine some popular identities. We as-
sume a solid command of Chapter 5. A modest amount of informa-
tion from Chapter 6 will also be used. Calculators are not required.
Indeed, many techniques discussed further expand the set of an-
gles at which we can evaluate the trigonometric functions exactly
by hand.

7.1 Sum and Difference Identities

Theorem 7.1 (Sum and Difference Identities) Suppose α and
β are standard position angles.

(i) sin(α± β) = sinα cosβ ± cosα sinβ

(ii) cos(α± β) = cosα cosβ ∓ sinα sinβ

(iii) tan(α± β) =
tanα± tanβ

1∓ tanα tanβ

The proof of Theorem 7.1 is difficult. As a result, it is broken up
into pieces within this chapter. The proof of (ii) is in Subsection
7.1.1, (i) is proven in Subsection 7.2.1, and (iii) is left as an exercise
for the reader.
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Example 7.1 Evaluate

sin
π

12
.

Solution Since
π

12
=

π

3
− π

4
,

Theorem 7.1 (i) tells us

sin
π

12
= sin

(︂π
3
− π

4

)︂
= sin

π

3
cos

π

4
− cos

π

3
sin

π

4

=

√
3

2
·
√
2

2
− 1

2
·
√
2

2

=

√
6

4
−

√
2

4

=

√
6−

√
2

4
.

■

Example 7.2 Evaluate

cos 195◦ cos 15◦ + sin 195◦ sin 15◦.

Solution Using Theorem 7.1 (ii),

cos 195◦ cos 15◦ + sin 195◦ sin 15◦ = cos(195◦ − 15◦)

= cos 180◦

= −1.

■

Example 7.3 Suppose the terminal side of α is in quadrant II and
the terminal side of β is in quadrant III. Assume

sinα =
3

5
and tanβ =

5

12
.

Compute (a) cos(α+ β) and (b) tan(α− β).
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Solution This will require Theorem 7.1 (ii) and (iii). However,
in addition to the given information, the identities require cosα,
tanα, sinβ, and cosβ. To find these values we will build triangles
using the techniques outlined in Section 5.4.

Say the side opposite the reference angle of α is 3. Then the hy-
potenuse must be 5. The side adjacent the reference angle has
signed length −4 due to the Pythagorean Theorem and the fact
that the terminal side of α lies in quadrant II.

x

y

−4

3
5

α

Let us say the side opposite β’s reference angle has length 5. Then
the side adjacent must have length 12. Because terminal side of
β lies in quadrant III, these sides’ signed lengths are −5 and −12,
respectively. The Pythagorean Theorem tells us the length of the
hypotenuse is 13.

x

y
−12

−5
13

β

We are ready to answer the questions.
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(a)

cos(α+ β) = cosα cosβ − sinα sinβ

=

(︃
−4

5

)︃(︃
−12

13

)︃
−
(︃
3

5

)︃(︃
− 5

13

)︃
=

48

65
+

15

65

=
63

65
.

(b)

tan(α− β) =
tanα− tanβ

1 + tanα tanβ

=
−3/4− 5/12

1 + (−3/4)(5/12)

=
−14/12

11/16

= −56

33
.

■

Example 7.4 Graph

y = 2
√
3 sinx− 2 cosx.

Solution Our goal is to use Theorem 7.1 (i) to rewrite the expres-
sion into the form

y = A sin (Bx+ C) +D,

and then use the techniques discussed in Section 6.1 to graph the
function. To do this, we will find a length r and a standard position
angle θ such that

2
√
3 sinx− 2 cosx = r (cos θ sinx− sin θ cosx) = r sin (x− θ) .

The terminal side of θ contains the point
(︁
2
√
3, 2
)︁
, because

r cos θ = 2
√
3 and r sin θ = 2.
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This allows us to build a triangle.

x

y

θ

•

(︁
2
√
3, 2
)︁

2
√
3

2
r

Using the Pythagorean Theorem,(︂
2
√
3
)︂2

+ 22 = r2 implies r = 4.

It follow that

cos θ =
2
√
3

4
=

√
3

2
and sin θ =

2

4
=

1

2
.

From here, we see that θ = π/6 satisfies the necessary criteria.

Then Theorem 7.1 (i) allows us to rewrite y = 2
√
3 sinx− 2 cosx:

y = 2
√
3 sinx− 2 cosx

= 4

(︄√
3

2
sinx− 1

2
cosx

)︄

= 4

(︄
cos

π

6
sinx− sin

π

6
cosx

)︄

= 4

(︄
sinx cos

π

6
− cosx sin

π

6

)︄
= 4 sin

(︂
x− π

6

)︂
.
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All that is left is to graph the result.

−4

−2

2

4

π
6

π
2

5π
6

7π
6

3π
2

11π
6

13π
6

x

y

7.1.1 Proof of Theorem 7.1 (ii)

Theorem 7.1 (ii) says

cos(α± β) = cosα cosβ ∓ sinα sinβ.

Proof Suppose α and β are angles in standard position. Let A
and B be the points

(cosα, sinα) and (cosβ, sinβ) ,

respectively.

x

y

•
•

A (cosα, sinα)

α
B (cosβ, sinβ)

β

O

Using the distance formula,

AB =

√︂
(cosα− cosβ)

2
+ (sinα− sinβ)

2
.

Rotate △OBA measure β clockwise, so OB lies on the positive
x-axis. Call the images of A and B under rotation A′ and B′
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respectively. Then A′ has coordinates
(︂
cos (α− β) , sin (α− β)

)︂
and B′ has coordinates (1, 0).

x

y

•

•

A′
(︂
cos (α− β) , sin (α− β)

)︂

α− β
B′ (1, 0)

Using the distance formula,

A′B′ =

√︃(︂
cos(α− β)− 1

)︂2
+ sin2 (α− β).

Rotations do not change lengths, so

A′B′ = AB.

It follows that√︃(︂
cos(α− β)− 1

)︂2
+ sin2 (α− β) =

√︃(︂
cosα− cosβ

)︂2
+ (sinα− sinβ)

2
.

Squaring both sides yields(︂
cos(α−β)−1

)︂2
+sin2 (α− β) =

(︂
cosα−cosβ

)︂2
+
(︂
sinα−sinβ

)︂2
.

Let us simplify each side separately. On the left side of the equa-
tion, we have(︂
cos(α− β)− 1

)︂2
+ sin2 (α− β)

= cos2(α− β)− 2 cos(α− β) + 1 + sin2 (α− β)

= cos2(α− β) + sin2 (α− β)⏞ ⏟⏟ ⏞
1

−2 cos(α− β) + 1

= 2− 2 cos(α− β).
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On the right side, we have(︂
cosα− cosβ

)︂2
+
(︂
sinα− sinβ

)︂2
= cos2 α− 2 cosα cosβ + cos2 β + sin2 α− 2 sinα sinβ + sin2 β

= cos2 α+ sin2 α⏞ ⏟⏟ ⏞
1

−2 cosα cosβ − 2 sinα sinβ + cos2 β + sin2 β⏞ ⏟⏟ ⏞
1

= 2− 2 cosα cosβ − 2 sinα sinβ.

Hence,

2− 2 cos(α− β) = 2− 2 cosα cosβ − 2 sinα sinβ
⇒ −2 cos(α− β) = −2 cosα cosβ − 2 sinα sinβ
⇒ cos(α− β) = cosα cosβ + sinα sinβ

Now to prove

cos(α+ β) = cosα cosβ − sinα sinβ.

Using Proposition 5.4, we know sine and cosine are odd and even,
respectively. Thus,

cos(α+ β) = cos (α− (−β))

= cosα cos(−β) + sinα sin(−β)

= cosα cosβ + sinα (− sinβ)

= cosα cosβ − sinα sinβ.

■

7.2 Other Identities

In this section, we will examine a few other popular trigonometric
identities. Their proofs all follow from Theorem 7.1, albeit indi-
rectly in some cases.

7.2.1 The Cofunction Identities
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Proposition 7.1 (Cofunction Identities) Let θ be a standard
position angle.

(i) sin (90◦ − θ) = cos θ

(ii) cos (90◦ − θ) = sin θ

(iii) tan (90◦ − θ) = cot θ

(iv) cot (90◦ − θ) = tan θ

(v) sec (90◦ − θ) = csc θ

(vi) csc (90◦ − θ) = sec θ

Proof The reader is given the opportunity to prove (i) in Exercise
12. We will prove (ii) and (iii).

(ii) Using Theorem 7.1 (ii),

cos(90◦ − θ) = cos 90◦ cos θ + sin 90◦ sin θ

= 0 · cos θ + 1 · sin θ
= sin θ.

(iii) Assume (i) and (ii) hold. Then

tan(90◦ − θ) =
sin(90◦ − θ)

cos(90◦ − θ)

=
cos θ

sin θ
= cot θ.

■

Example 7.5 Suppose tan 40◦ ≈ 0.839. Without using a calcula-
tor, approximately what is the value of cot 50◦?

Solution Since

cot 50◦ = tan(90◦ − 40◦) = tan 40◦,

we conclude that
cot 50◦ ≈ 0.839.

■
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Example 7.6 Use the Cofunction Identities (i) and (ii) as well as
Theorem 7.1 (ii) to prove

sin(α± β) = sinα cosβ ± sinβ cosα.

Solution Theorem 7.1 (ii) tells us

cos (α± β) = cosα cosβ ∓ sinα sinβ,

and Cofunction Identity (ii) says cos (90◦ − θ) = sin θ. Therefore,

sin(α± β) = cos
(︂
90◦ − (α± β)

)︂
= cos

(︂
(90◦ − α)∓ β

)︂
= cos(90◦ − α) cosβ ± sin(90◦ − α) sinβ

= sinα cosβ ± cosα sinβ.

■

7.2.2 Double Angle Identities

Proposition 7.2 (Double Angle Identities) Suppose θ is a stan-
dard position angle.

(i) sin 2θ = 2 sin θ cos θ

(ii) cos 2θ =

⎧⎪⎨⎪⎩
cos2 θ − sin2 θ

2 cos2 θ − 1

1− 2 sin2 θ

(iii) tan 2θ =
2 tan θ

1− tan2 θ

Proof The proofs for these properties are an application of Theo-
rem 7.1.

(i) Using Theorem 7.1 (i),

sin 2θ = sin(θ + θ)

= sin θ cos θ + sin θ cos θ

= 2 sin θ cos θ.
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(ii) Due to Theorem 7.1 (ii),

cos 2θ = cos(θ + θ)

= cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ.

The other two variations of Proposition 7.2 (ii) following from
the Pythagorean Identities

sin2 θ = 1− cos2 θ and cos2 θ = 1− sin2 θ.

We have

cos 2θ = cos2 θ − sin2 θ

= cos2 θ − (1− cos2 θ)

= 2 cos2 θ − 1

and

cos 2θ = cos2 θ − sin2 θ

= (1− sin2 θ)− sin2 θ

= 1− 2 sin2 θ.

(iii) From Theorem 7.1 (iii),

tan 2θ = tan(θ + θ)

=
tan θ + tan θ

1− tan2 θ

=
2 tan θ

1− tan2 θ
.

■
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Example 7.7 Assume

cos2 2x = 2− 5 cosx.

Solve for x.

Solution The second case of Proposition 7.2 (ii) tells us

cos 2x = 2 cos2 x− 1.

So,
cos2 2x = 2− 5 cosx

⇒ 2 cos2 x− 1 = 2− 5 cosx
⇒ 2 cos2 x+ 5 cosx− 3 = 0
⇒ (2 cosx− 1)(cosx+ 3) = 0

It follows that

cosx =
1

2
or cosx = −3.

The latter case is impossible. If cosx = 1/2, then

x =
π

3
+ 2πn or x =

5π

3
+ 2πn

for n = 0, 1,−1, 2,−2, . . .. ■

Example 7.8 Suppose

tanα = −3

2
and secα > 0.

Find (a) sin 2α, (b) cos 2α, and (c) tan 2α.

Solution The first step is to build a triangle using the techniques
outlined in Section 5.4. Since tanα < 0 and secα > 0, the terminal
side of α is in quadrant IV. Say, the side opposite the reference angle
has signed length of −3. Then the adjacent side has length 2. Due
to the Pythagorean Theorem the hypotenuse has length

√
13.
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x

y

2

−3√
13

α

(a) Using Proposition 7.2 (i),

sin 2α = 2 sinα cosα

= 2

(︃
− 3√

13

)︃(︃
2√
13

)︃
= −12

13
.

(b) Proposition 7.2 (ii) tells us

cos 2α = 2 cos2 α− 1

= 2

(︃
2√
13

)︃2

− 1

= − 5

13
.

(c) Because of Proposition 7.2 (iii),

tan 2α =
2 tanα

1− tan2 α

=
2(−3/2)

1− (−3/2)2

=
12

5
.

■
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The triangle we constructed in Example 8 was not required for (c).
This is because we were given tangent.

7.2.3 Half Angle Identities

Proposition 7.3 (Half Angle Identities) Assume θ is a stan-
dard position angle.

(i) sin
θ

2
= ±

√︃
1− cos θ

2

(ii) cos
θ

2
= ±

√︃
1 + cos θ

2

(iii) tan
θ

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±
√︃

1− cos θ

1 + cos θ

1− cos θ

sin θ

sin θ

1 + cos θ

Proof

(i) Proposition 7.2 (ii) gives

cos 2α = 1− 2 sin2 α.

Solving for sin2 α yields

sin2 α =
1− cos(2α)

2
.

Taking square roots and substituting θ/2 for α gives

sin
θ

2
= ±

√︃
1− cos θ

2
.

(ii) From Proposition 7.2 (ii),

cos(2α) = 2 cos2 α− 1.
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Solving for cos2 α gives

cos2 α =
1 + cos(2α)

2
.

Then, after taking square roots and replacing α with θ/2, we
have

cos
θ

2
= ±

√︃
1 + cos θ

2
.

(iii) The proof for (iii) follows from (i) and (ii):

tan
θ

2
=

±
√︂

1−cos θ
2

±
√︂

1+cos θ
2

=

= ±
√︃

1− cos θ

2
· 2

1 + cos θ

= ±
√︃

1− cos θ

1 + cos θ
.

To prove the second and third cases of (iii), we will use the
identity

1− cos2 θ = sin2 θ.

We have

tan
θ

2
= ±

√︃
1− cos θ

1 + cos θ
tan

θ

2
= ±

√︃
1− cos θ

1 + cos θ

= ±
√︃

1− cos θ

1 + cos θ
· 1− cos θ

1− cos θ
= ±

√︃
1− cos θ

1 + cos θ
· 1 + cos θ

1 + cos θ

= ±

√︄
(1− cos θ)2

1− cos2 θ
= ±

√︄
1− cos2 θ

(1− cos θ)2

= ±

√︄
(1− cos θ)2

sin2 θ
= ±

√︄
sin2 θ

(1− cos θ)2

= ±
⃓⃓⃓⃓
1− cos θ

sin θ

⃓⃓⃓⃓
= ±

⃓⃓⃓⃓
sin θ

1− cos θ

⃓⃓⃓⃓
Then a careful analysis of signs reveals

tan
θ

2
=

1− cos θ

sin θ
and tan

θ

2
=

sin θ

1− cos θ
.
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■

Example 7.9 Use the Half Angle Identities to compute (a) sin 157.5◦,
(b) cos 157.5◦, and (c) tan 157.5◦.

Solution

(a) Using Half Angle Identity (i),

sin 157.5◦ = sin

(︃
1

2
· 315◦

)︃
= ±

√︃
1− cos 315◦

2
.

Because 315◦ is in quadrant IV and its reference angle is 45◦,
we know

cos 315◦ = cos 45◦ =

√
2

2
.

It follows that

sin 157.5◦ = ±
√︃

1− cos 315◦

2

= ±

√︄
1−

√
2/2

2

= ±

√︄
2−

√
2

4

= ±
√︁
2−

√
2

2
.

Since 157.5◦ is in quadrant II, sine is positive. Hence,

sin 157.5◦ =

√︁
2−

√
2

4
.

(b) Using Half Angle Identity (ii),

cos 157.5◦ = cos

(︃
1

2
· 315◦

)︃
= ±

√︃
1 + cos 315◦

2
.
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From (a), cos 315◦ =
√
2/2. It follows that

cos 157.5◦ = ±
√︃

1 + cos 315◦

2

= ±

√︄
1 +

√
2/2

2

= ±

√︄
2 +

√
2

4

= ±
√︁
2 +

√
2

2
.

Since 157.5◦ is in the quadrant II, cosine is negative. Thus,

cos 157.5◦ = −
√︁
2 +

√
2

2
.

(c) Using the second Half Angle Identity (iii),

tan 157.5◦ = tan

(︃
1

2
· 315◦

)︃
=

1− cos 315◦

sin 315◦
.

All is left is to plug in the appropriate values for sine and
cosine. From our previous work, we know cos 315◦ =

√
2/2.

Because 315◦ is in quadrant IV and its reference angle is 45◦,

sin 315◦ = − sin 45◦ −
√
2

2
.

Ergo,

tan 157.5◦ =
1− cos 315◦

sin 315◦

=
1−

√
2/2

−
√
2/2

=
1−

√
2/2

−
√
2/2

· 2
√
2

2
√
2

=
2
√
2− 2

−2

= 1−
√
2.

■
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Example 7.10 Suppose θ is in [0, 2π), and

cot θ = −
√
7

3
and cos θ < 0.

What are the exact values of (a) sin(θ/2), (b) cos(θ/2), and (c)
tan(θ/2)?

Solution The first step is to build a triangle. Since cot θ < 0
and cos θ < 0, the terminal side of θ lies in quadrant II. Suppose
the signed length of the side adjacent the reference angle of θ is
−
√
7. Then the side opposite has length 3. Using the Pythagorean

Theorem, the hypotenuse must have length 4.

x

y

−
√
7

3
4

θ

We are ready to answer the questions.

(a) Using Half Angle Identity (i),

sin
θ

2
= ±

√︃
1− cos θ

2

= ±

√︄
1−

(︁
−
√
7/4
)︁

2

= ±

√︄
4 +

√
7

8

= ±

√︄
8 + 2

√
7

16

= ±
√︁
8 + 2

√
7

4
.
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Since π/2 < θ < π implies π/4 < θ/2 < π/2, we conclude
sin(θ/2) is positive. Thus,

sin
θ

2
=

√︁
8 + 2

√
7

4
.

(b) Using Half Angle Identity (ii),

cos
θ

2
= ±

√︃
1 + cos θ

2

= ±

√︄
1 +

(︁
−
√
7/4
)︁

2

= ±

√︄
4−

√
7

8

= ±

√︄
8− 2

√
7

16

= ±
√︁
8− 2

√
7

4
.

Since π/2 < θ < π implies π/4 < θ/2 < π/2, it follows that
cos(θ/2) is positive. Therefore,

cos
θ

2
=

√︁
8− 2

√
7

4
.

(c) Lastly, using the second case of Half Angle Identity (iii),

tan
θ

2
=

1− cos θ

sin θ

=
1 +

√
7/4

3/4

=
4 +

√
7

3
.

■
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Another set of identities, which can be used to solve the same type
of problems, are the Power Reducing Identities.

Corollary 7.1 (Power Reducing Identities) Say that θ is a stan-
dard position angle.

(i) sin2 θ =
1− cos 2θ

2

(ii) cos2 θ =
1 + cos 2θ

2

(iii) tan2 θ =
1− cos 2θ

1 + cos 2θ

Readers that prefer these identities to the Half Angle Identities are
welcome to use them instead.

7.2.4 Product to Sum and Difference Identities

Proposition 7.4 (Product to Sum and Difference Identities)
Suppose α and β are in R.

(i) sinα sinβ =
1

2

(︂
cos(α− β)− cos(α+ β)

)︂
(ii) cosα cosβ =

1

2

(︂
cos(α+ β) + cos(α− β)

)︂
(iii) sinα cosβ =

1

2

(︂
sin(α+ β) + sin(α− β)

)︂
(iv) cosα sinβ =

1

2

(︂
sin(α+ β)− sin(α− β)

)︂
These identities were invaluable for non-exact evaluation before
students had access to calculators. In those days, students used
tables to evaluate trigonometric expressions. As a result, these
identities made it less cumbersome for students to evaluate prod-
ucts, because they were able to convert them into sums or differ-
ences which are easier to compute. Some programmers are still
interested in the identities for the same reason.

There are other modern applications. The Product to Sum and
Difference Identities allow students to find exact values of trigono-
metric functions at a slightly larger set of angles. The identities
have applications in Calculus as well.
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Proof

(i) Theorem 7.1 (ii) gives

cosα cosβ + sinα sinβ = cos(α− β)

−
(︂
cosα cosβ − sinα sinβ = cos(α+ β)

)︂
2 sinα sinβ = cos(α− β)− cos(α+ β)

Then dividing by 2 yields

sinα sinβ =
1

2

(︂
cos(α+ β)− cos(α− β)

)︂
.

(ii) Using Theorem 7.1 (ii),

cosα cosβ − sinα sinβ = cos(α+ β)
+ cosα cosβ + sinα sinβ = cos(α− β)

2 cosα cosβ = cos(α+ β) + cos(α− β).

Then dividing by 2 yields

cosα cosβ =
1

2

(︂
cos(α+ β) + cos(α− β)

)︂
.

(iii) From Theorem 7.1 (i),

sinα cosβ + cosα sinβ = sin(α+ β)
+ sinα cosβ − cosα sinβ = sin(α− β)

2 sinα cosβ = sin(α+ β) + sin(α− β).

Then dividing by 2 yields

sinα cosβ =
1

2

(︂
sin(α+ β) + sin(α− β)

)︂
.

(iv) Because of Theorem 7.1 (i),

sinα cosβ + cosα sinβ = sin(α+ β)

−
(︂
sinα cosβ − cosα sinβ = sin(α− β)

)︂
2 cosα sinβ = sin(α+ β)− sin(α− β).

Then dividing by 2 yields

cosα cosβ =
1

2

(︂
sin(α+ β)− sin(α− β)

)︂
.
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■

Example 7.11 Compute (a) cos 45◦ cos 15◦ and (b) sin 22.5◦ cos 22.5◦.

Solution

(a) Using Proposition 7.4 (ii),

cos 45◦ cos 15◦ =
1

2

(︂
cos(45◦ + 15◦) + cos(45◦ − 15◦)

)︂
=

1

2

(︂
cos 60◦ + cos 30◦

)︂
=

1

2

(︄
1

2
+

√
3

2

)︄

=
1

2

(︄
1 +

√
3

2

)︄

=
1 +

√
3

4
.

(b) Due to Proposition 7.4 (iii),

sin 22.5◦ cos 22.5◦ =
1

2

(︂
sin(22.5◦ + 22.5◦) + sin(22.5◦ − 22.5◦)

)︂
=

1

2

(︂
sin 45◦ + sin 0

)︂
=

1

2

(︄√
2

2
+ 0

)︄

=

√
2

4
.

■
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7.3 Verifying Identities

We will verify identities in the final section of this chapter. The
key ideas of the verification process were introduced in Section 5.6.
However, this chapter has added more identities to our knowledge
base, and the reader will be expected to utilize them.

Example 7.12 Verify

csc(π/2− α)

1 + tan2 α
= cosα.

SolutionWe need three identities: Pythagorean Identity (ii), Propo-
sition 7.1 (iv), and a Reciprocal Identity. They say

1 + tan2 α = sec2 α, csc
(︂π
2
− α

)︂
= secα, and

1

secα
= cosα,

respectively. So,

csc(π/2− α)

1 + tan2 α
=

csc(π/2− α)

sec2 α

=
secα

sec2 α

=
1

secα
= cosα.

■

205



Example 7.13 Verify that the equation is an identity.

tan 2β

tanβ
=

2 cos2 β

cos2 β − sin2 β

Solution Recall that

tanβ =
sinβ

cosβ
.

We also need Proposition 7.2 (iii) which says

tan 2β =
2 tanβ

1− tan2 β
.

Utilizing these identities, we have

tan 2β

tanβ
= tan(2β)

1

tanβ

=
2 tanβ

1− tan2 β
· 1

tanβ

=
2

1− tan2 β

=
2

1− sin2 β
cos2 β

=
2/1

cos2 β−sin2 β
cos2 β

=
2

1
· cos2 β

cos2 β − sin2 β

=
2 cos2 β

cos2 β − sin2 β
.

■
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Example 7.14 Verify the identity.

−1

2
+

1

2
sin θ cot

θ

2
+

1

2
cos θ = cos θ.

Solution We need a Reciprocal Identity and the third case of
Proposition 7.3 (iii), which say

cot
θ

2
=

1

tan(θ/2)
and tan

θ

2
=

sin θ

1 + cos θ
.

With our identities in mind, we proceed as follows:

−1

2
+

1

2
sin θ cot

θ

2
+

1

2
cos θ = −1

2
+

sin θ

2
· 1

tan (θ/2)
+

1

2
cos θ

= −1

2
+

sin θ

2
· 1 + cos θ

sin θ
+

1

2
cos θ

= −1

2
+

1

2
(1 + cos θ) +

1

2
cos θ

= −1

2
+

1

2
+

1

2
cos θ +

1

2
cos θ

= cos θ.

■
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7.4 Exercises

** Exercise 1

Find the exact value.

(a) cos 285◦

(b) tan(−165◦)

(c) sin 375◦

(d) tan 255◦

(e) cos(−525◦)

(f) csc 345◦

(g) sec 105◦

(h) cot 15◦

** Exercise 2

Calculate the exact value.

(a) tan
(︁
− π

12

)︁
(b) sin 19π

12

(c) cot 11π
12

(d) sin
(︁
− 35π

12

)︁
(e) sec 23π

12

(f) csc
(︁
− 7π

12

)︁
(g) cos 25π

12

(h) cot
(︁
− 85π

12

)︁
** Exercise 3

What is the exact value?

(a) cos 408◦ cos 198◦+sin 408◦ sin 198◦

(b)
tan 57◦ + tan 78◦

1− tan 57◦ tan 78◦

(c) sin 575◦ cos 275◦−sin 275◦ cos 575◦

(d)
tan 312◦ − tan 192◦

1 + tan 312◦ tan 197◦

(e) cos 40◦ cos 20◦−sin 40◦ sin 20◦

(f)
tan 286◦ − tan 136◦

1 + tan 286◦ tan 136◦

** Exercise 4

Compute the exact value.

(a)
tan 5π

9 + tan 43π
36

1− tan 5π
9 tan 43π

36

(b) sin 19π
9 cos 7π

9 −sin
7π
9 cos 19π

9

(c)
tan 17π

18 − tan π
9

1 + tan 17π
18 tan π

9

(d) cos 5π
24 cos π

24−sin
5π
24 sin π

24

(e)
tan 31π

18 − tan 17π
36

1 + tan 31π
18 tan 17π

36

(f) cos π
8 cos 23π

24 +sin π
8 sin 23π

24

** Exercise 5

Solve for θ.

(a) cos
(︂
θ +

π

6

)︂
= sin θ

(b) sin(θ+π
4 )+cos(θ+π

4 )=−1

(c) tan
(︂
θ +

π

6

)︂
= −

√
3

** Exercise 6

Suppose sinα = 12/13, tanβ =
−
√
17/8, cosα < 0, and cosβ >

0.

(a) Find sin(α+ β).

(b) What is cos(α− β)?

(c) Evaluate tan(α+ β).

(d) Calculate csc(α− β).
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** Exercise 7

Assume cosα = −4/5, cotβ =
15/8, tanα > 0, and sinβ > 0.

(a) Find cos(α− β).

(b) What is tan(α− β)?

(c) Evaluate sec(α+ β).

(d) Calculate cot(α+ β).

** Exercise 8

Write each expression in the
form

y = A sin (Bx+ C) +D

for some A, B, C, and D.

(a) y = 5 sinπx+ 5 cosπx

(b) y = −3 sinx− 3
√
3 cosx

(c) y = cosx− sinx

(d) y =
√
3 sin 2x− cos 2x

** Exercise 9

Graph each expression.

(a) y = 3
√
2 sin

x

2
+3

√
2 cos

x

2

(b) y =
√
3 sinx− cosx

(c) y = −1

4
sinx−

√
3

4
cosx

(d) y =
√
2 cos

πx

2
−
√
2 sin

πx

2

* Exercise 10

sin 17◦≈0.292

cos 22◦≈0.927

tan 77◦≈4.331

csc 43◦≈1.466

sec 55◦≈1.743

cot 25◦≈2.145

Find the approximate value
without a calculator.

(a) cot 13◦

(b) cos 73◦

(c) csc 35◦

(d) tan 65◦

(e) sin 68◦

(f) sec 47◦

* Exercise 11

sin 5π
16≈0.831

cos 2π
5 ≈0.309

tan 7π
11≈−2.190

csc π
7≈2.305

sec 5π
18≈1.556

cot 11π
16 ≈−0.668

Compute the exact value with-
out a calculator.

(a) tan

(︃
−3π

16

)︃
(b) cos

3π

16

(c) csc
2π

9

(d) sin
π

10

(e) sec
5π

14

(f) cot

(︃
−3π

22

)︃

** Exercise 12

Use Proposition 7.1 (ii) and the
substitution

θ = 90◦ − φ

to prove Proposition 7.1 (i).
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** Exercise 13

Use parts (i) and (ii) of Proposi-
tion 7.1 to prove parts (iv), (v),
and (vi).

** Exercise 14

Suppose csc θ = −17/15 and
cos θ < 0. Find the six trigono-
metric functions evaluated at 2θ.

** Exercise 15

Say secφ = 5/4 and tanφ > 0.
What are the six trigonometric
functions evaluated at 2φ?

** Exercise 16

Solve for θ.

(a) sin 2θ + cos θ = 0

(b) sin θ = 1− cos 2θ

(c) cos 2θ = 3 cos θ + 4

(d) tan 2θ + 7 = 7− tan θ

** Exercise 17

Evaluate without a calculator.

(a) cos 165◦

(b) tan 285◦

(c) sin 22.5◦

(d) csc 15◦

(e) cot 255◦

(f) sec 202.5◦

(g) sin 7.5◦

(h) cos 191.25◦

** Exercise 18

Compute without a calculator.

(a) cos
π

8

(b) tan
11π

12

(c) sin
19π

8

(d) sec
17π

12

(e) cot
9π

8

(f) csc
π

12

(g) tan
π

24

(h) sin
17π

16

** Exercise 19

Say tan θ = −7/24, cos θ > 0,
and 0 ≤ θ < 360◦. Compute
the values of the six trigonomet-
ric functions at θ/2.

** Exercise 20

Assume secφ = −17/8, cscφ >
0, and 0 ≤ φ < 2π. What are
the six trigonometric functions
at φ/2?

** Exercise 21

Calculate.

(a) cos 105◦ cos 45◦

(b) sin 30◦ sin 15◦

(c) sin 105◦ cos 105◦

(d) cos
435◦

2
sin

375◦

2
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** Exercise 22

Evaluate.

(a) cos
7π

12
sin

π

4

(b) sin
π

6
cos

π

12

(c) sin
29π

24
sin

25π

24

(d) cos
7π

12
cos

π

12

** Exercise 23

(i) 1

(ii) tanx

(iii) − cotx

(iv) secx

Match the above with the ex-
pressions below. Some options
may be used more than once.

(a)
1 + tan2 x

csc(90◦ − x)

(b) cos(90◦ − x) csc(x)

(c) cos(−x) csc(−x)

(d)
sin(90◦ − x)

sin(−x)

(e) cosx csc(90◦ − x)

(f)
secx

cscx

(g)
sin 2x

2 cos2 x

(h)
sin (90◦ − 2x)

1− 2 sin2 x

** Exercise 24

Verify the identity.

(a) 2 sin(α+π/4)√
2

= sinα+ cosα

(b) 2 cos(θ−45◦)√
2

= sinβ + cosβ

(c) tan
(︁
γ + π

4

)︁
=

1 + tan γ

1− tan γ

** Exercise 25

Verify.

(a)
cos(90◦ − α)

1− cos2 α
= cscα

(b)
sec(π/2− β)

1 + cot2 β
= sinβ

(c)
cot(90◦ − γ)

sec2 γ − 1
= cot γ

** Exercise 26

Verify the identities.

(a)
tanα

tan 2α
=

2− sec2 α

2

(b)
tan 2β

sinβ
=

2

2 cosβ − secβ
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** Exercise 27

Verify.

(a) sec 2α =
sec2 α

1− tan2 α

(b) csc 2β =
1

2
secβ cscβ

(c) cot 2γ =
cot2 γ − 1

2 cot γ

** Exercise 28

Verify the identities.

(a)
sin 2α

1− cos2 α
= 2 cotα

(b)
1− sin2 β

sin 2β
=

cotβ

2

(c)
sin 2γ

2− 2 sin2 γ
= tan γ

** Exercise 29

Verify.

(a)
cosα+ sinα

cos 2α
=

secα

1− tanα

(b)
cosβ − sinβ

cos 2β
=

cscβ

1 + cotβ

(c)
cos 2γ + cos γ

2 cos γ − 1
= cos γ + 1

** Exercise 30

Verify the identities.

(a)
2 sin2(α/2)

1− cos2 α
=

secα

1 + secα

(b)
cos2(β/2)

sin2 β
=

csc2 β + cscβ cotβ

2

(c)
tan(γ/2)

1− cos γ
= csc γ

*** Exercise 31

Verify.

sin θ = cot
θ

2
− cos θ cot

θ

2
.

*** Exercise 32

Use Theorem 7.1 (i) and (ii) to
prove

(a) tan(α+β) =
tanα+ tanβ

1− tanα tanβ

(b) tan(α−β) =
tanα− tanβ

1 + tanα tanβ

** Exercise 33

Use Theorem 7.1 to prove (a)
sine is odd and (b) cosine is
even. This exercise is only
for didactic purposes; we used
that sine and cosine are odd
and even, respectively, when we
proved Theorem 7.1.
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Chapter 8

Inverse Trigonometric
Functions

This chapter will analyze inverses of trigonometric functions. We
studied inverse trigonometric functions in Section 4.2, but only to
find acute angle measures. Inverse trigonometric functions require
more care when utilized to find angle measures more generally.

We assume thorough knowledge of Chapters 5 and 6. Some un-
derstanding of Chapter 7 is also helpful. Scientific calculators are
necessary.

8.1 Inverses

Definition 8.1 The function g is the inverse of f if

f
(︂
g(x)

)︂
= x and g

(︂
f(x)

)︂
= x.

Inverse functions “undo” the original function. So, if f(x) = y and
g is the inverse of f , then g(y) = x.
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x −2 −1 0 1 2
f(x) 1 2 0 7 −4

Example 8.1 Suppose f is defined via the table above, and g is

the inverse of f . Compute (a) g(7), (b) g
(︂
f(2)

)︂
, (c) f

(︂
g(1)

)︂
, and

(d) g
(︂
g(−4)

)︂
.

Solution

(a) Since f(1) = 7, we know g(7) = 1.

(b) Inverses “undo” the original functions, so we immediately

know g
(︂
f(2)

)︂
= 2.

(c) The original function also “undoes” the inverse, which means

f
(︂
g(1)

)︂
= 1.

(d) We know f(2) = −4 and f(−1) = 2. Hence,

g
(︂
g(−4)

)︂
= g(2) = −1.

■

Some functions are not invertible, i.e. they do not have an inverse.
For example, f(x) = x2 has no inverse. This is because f sends
more than one input to the same output, e.g.

f(−2) = (−2)2 = 4 and f(2) = 22 = 4.

As a result, if g were the inverse of f(x) = x2, then g(4) = −2 and
g(4) = 2. This contradicts the definition of a function, so no such
function g exists.

Definition 8.2 A function f is one-to-one if

f(u) = f(v) implies u = v.

Example 8.2 Determine which functions are one-to-one.
(a) f(x) = sinx, (b) g(x) = 2x− 3, and (c) h(x) = x2 − 2x+ 1
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(a) The function f(x) = sinx is not one-to-one. For example,

f(0) = sin 0 = 0 and f(2π) = sin 2π = 0.

(b) The function g(x) = 2x−3 is one-to-one, because each output
corresponds to exactly one input.

(c) The function h(x) = x2 − 2x + 1 is not one-to-one. For
example,

h(0) = 1 and h(2) = 4− 4 + 1 = 1.

■

Proposition 8.1 A function is invertible if and only if it is one-
to-one.

Example 8.3 Which of the functions in Example 2 have an in-
verse?

Solution Due to Proposition 8.1, a function is invertible if and
only if it is one-to-one. It follows that the function f defined by
f(x) = sinx is not invertible because it is not one-to-one, the
function g defined by g(x) = 2x− 3 is invertible because it is one-
to-one, and the function h defined by h(x) = x2 − 2x + 1 is not
invertible because it is not one-to-one. ■

Pictorially, the one-to-one criterion for invertibility of a function is
satisfied if there is no horizontal line that intersects the graph of
the function at more than one point. In other words, we have the
following rule.

Horizontal Line Test

• If a horizontal line intersects the graph of a func-
tion at more than one point, then the function is
not invertible.

• If no horizontal intersects the graph of a function
at more than one point, then the function is in-
vertible.
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x

y

• •

x

y

•

•

(a) (b)

x

y

x

y

(c) (d)

Example 8.4 Use the horizontal line test to determine which
graphs correspond to invertible functions. Assume each function’s
domain is contained within the x-axis shown.

Solution

(a) Since we can draw a horizontal line which intersects the graph
at more than one point, the corresponding function is not
invertible.

x

y

• •

• •

(b) This graph corresponds to an invertible function. No matter
where a horizontal line is drawn, it intersects the graph no
more than once.

(c) This function is not invertible. Any horizontal line intersects
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the graph at two points.

x

y

• •

(d) No horizontal line intersects the graph at more than one
point. Therefore, the corresponding function is invertible.

■

8.1.1 Restricting the Domain

Though many functions are not invertible, we can restrict their
domains to intervals on which they are one-to-one. The functions
obtained from the restrictions are invertible. Sometimes we refer
to the inverse of a function, when it is restricted to a particular
domain, as “the inverse” of the function. This is not technically
correct as the original function is not invertible, but it is a com-
mon practice which will be adopted within this text to simplify
sentences.

Consider f(x) = x2. It is not one-to-one, so it has no general
inverse. However, f(x) = x2 is one-to-one for x ≥ 0. Within this
domain its inverse is g(x) =

√
x.

No horizontal line intersects
the graph of f(x) = x2 at
more than one point if we as-
sume x ≥ 0.

x

y

•

Another way to make f(x) = x2 one-to-one is to restrict its domain
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to x ≤ 0. On this domain, its inverse is g(x) = −
√
x.

If we assume x ≤ 0, the graph
of f(x) = x2 will intersect
any horizontal line at most
once.

x

y

•

Much like f(x) = x2, many functions have multiple ways to obtain
invertibility via a restriction of the domain. Usually the restriction
is either based on a convention or the needs of the mathematician
at the particular moment.

x

y

1 2 3
•

•

Example 8.5 Consider the graph above. (a) Determine the do-
main of the function. (b) Find two ways of restricting the domain
to obtain invertibility.

Solution

(a) The domain of the function depicted in the graph is 0 ≤ x <
3.

(b) No horizontal line intersects the graph more than once if we
assume either 0 ≤ x ≤ 1 or 1 ≤ x < 3. Hence, the cor-
responding function is invertible if we restrict its domain to
either 0 ≤ x ≤ 1 or 1 ≤ x < 3.

■
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8.2 Arc Sine

Consider f(x) = sinx. As Example 2 (a) showed, sine is not one-
to-one. As a result, it does not have an inverse on its entire domain.
However, as can be seen from the graph below, f is invertible if we
restrict the domain to −π/2 ≤ x ≤ π/2.

x

y

−π −π
2

π
2

π

−1

1

•

•

Definition 8.3 The arc sine of x, denoted arcsinx, is the function
defined by the relationship

y = arcsinx if sin y = x

for −1 ≤ x ≤ 1 and −π/2 ≤ y ≤ π/2.

Alternative notation for arcsinx is sin−1 x. Usually when this nota-
tion is used, we say “inverse sine of x”. Both forms will be utilized
in examples and exercises. However, arcsinx is our preferred nota-
tion because sin−1 x is easily confused with cscx.
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Example 8.6 Evaluate without a calculator when possible.

(a) sin−1 1

(b) arcsin
1

2

(c) sin−1
(︃
−1

2

)︃
(d) arcsin 11

Solution

(a) We know

sin−1 1 =
π

2
because sin

π

2
= 1

and π/2 is in the interval [−π/2, π/2].

(b) Since sin (π/6) = 1/2 and π/6 is in the interval [−π/2, π/2],

arcsin
1

2
=

π

6
.

(c) Result (b) tells us the reference angle of sin−1(−1/2) is π/6.
Since the range of inverse sine is the interval [−π/2, π/2],
the answer to (c) must be in quadrant IV and be a negative
radian measure. Ergo,

sin−1
(︃
−1

2

)︃
= −π

6
.

(d) The value 11 is not within the domain of arc sine. Hence,
arcsin 11 is undefined.

■

Let us introduce a proposition which some students use to evaluate
problems like Example 6 (c).

Proposition 8.2 If −1 ≤ x ≤ 1, then

arcsin(−x) = − arcsinx.

In other words, f(x) = arcsinx is an odd function.
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Proof Suppose −1 ≤ x ≤ 1 and consider

y = arcsin(−x).

Then
⇒ sin y = −x
⇒ − sin y = x.

Proposition 5.4 (i) tells us − sin y = sin(−y). So,

sin(−y) = x
⇒ −y = arcsinx
⇒ y = − arcsinx
⇒ arcsin(−x) = − arcsinx.

■

Example 8.7 Use Proposition 8.2 to evaluate

sin−1

(︄
−
√
2

2

)︄
.

Solution Since sin(π/4) =
√
2/2, we have

sin−1

(︄
−
√
2

2

)︄
= − sin−1

√
2

2
= −π

4
.

■

Proposition 8.3

(i) Assume −1 ≤ x ≤ 1. Then

sin (arcsinx) = x.

(ii) Suppose −π/2 ≤ θ ≤ π/2. Then

arcsin (sin θ) = θ.
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Part (i) of Proposition 8.3 does not merit careful thought in calcu-
lations. We use arc sine as the inverse of sine, and the range of sine
is the interval [−1, 1]. As such, there is never a need to evaluate
arc sine for values outside of the interval.

However, part (ii) of Proposition 8.3 requires careful consideration
in computations. For example,

sin
3π

2
= −1 but arcsin

(︃
sin

3π

2

)︃
= −π

2
.

Arc sine and sine are not general inverses of each other.

Example 8.8 Evaluate without a calculator.
(a) sin (arcsin 0.8), (b) arcsin (sin 60◦), and (c) arcsin (sin 4).

Solution

(a) Since −1 ≤ 0.8 ≤ 1, we immediately know

sin (arcsin 0.8) = 0.8.

(b) We have
arcsin (sin 60◦) = 60◦,

due to the fact that −90◦ ≤ 60◦ ≤ 90◦.

(c) Because π ≈ 3.14 < 4 < 3π/2 ≈ 4.71, the terminal side of 4
lies in quadrant III. So, the reference angle of 4 is 4− π.

Furthermore, sine is negative is quadrant III. This means that
arcsin (sin 4) is between −π/2 and 0, because arc sine sends
negative values in its domain to radian measures between
−π/2 and 0.

Thus,
arcsin (sin 4) = − (4− π) = π − 4.

y

x

4

4− π π − 4
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■

Example 8.9 Suppose

6 sin2 θ + sin θ − 2 = 0.

Solve for θ when (a) −90◦ ≤ θ ≤ 90◦ and (b) −180◦ < θ ≤ 180◦.

Solution The first step is to factor and use the zero-product prop-
erty:

6 sin2 θ + sin θ − 2 = 0 implies (2 sin θ − 1)(3 sin θ + 2) = 0.

It follows that

2 sin θ − 1 = 0 or 3 sin θ + 2 = 0

Solving this equations for sin θ yields

sin θ =
1

2
or sin θ = −2

3
.

We are ready to answer the questions.

(a) We know

sin θ =
1

2
implies θ = arcsin

1

2
= 30◦,

and

sin θ = −2

3
implies θ = arcsin

(︃
−2

3

)︃
≈ −41.810◦.

Since −90◦ ≤ θ ≤ 90◦ is the range of arc sine, we have not
missed any angle measures.

(b) Now suppose −180◦ < θ ≤ 180◦. Consider

sin θ =
1

2
.

It is still the case that θ = 30◦ is a solution. But there is
another solution θ whose terminal side lies in quadrant II. In
particular,

θ = 180◦ − 30◦ = 150◦
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is a solution.

Consider

sin θ = −2

3
.

The degree measure arcsin(−2/3) ≈ −41.810◦ is still a so-
lution. But there is another solution θ whose terminal side
lies in quadrant III. The reference angle is arcsin(2/3). Thus,
this solution is

θ = −180◦ + arcsin
2

3
≈ −138.190◦.

y

x
arcsin 2

3

θ

arcsin
(︁
− 2

3

)︁

To summarize, θ =

−180◦+arcsin
2

3
≈ −138.190◦, arcsin

(︃
−2

3

)︃
≈ −41.810◦, 30◦,

or 150◦.

■
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8.3 Arc Cosine

The function f(x) = cosx is not one-to-one, so no general inverse
exists. However, if we suppose 0 ≤ x ≤ π, then no horizontal line
intersects the graph more than once. This implies f is invertible
within the domain [0, π].

x

y

−π
2

π
2

π 3π
2

−1

1 •

•

Definition 8.4 The arc cosine of x, denoted arccosx, is the
function defined by the relationship

y = arccosx if cos y = x

for −1 ≤ x ≤ 1 and 0 ≤ y ≤ π.

An alternative notation for the arc cosine is cos−1 x. When this
notation is used, it is usually read as “cosine inverse of x” instead
of “arc cosine of x”.
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Example 8.10 Compute without a calculator.

(a) cos−1(−1)

(b) arccos

√
2

2

(c) cos−1

(︄
−
√
2

2

)︄
(d) arccos 142

Solution

(a) We conclude

cos−1(−1) = π because cosπ = −1

and π is an element of the closed interval [0, π].

(b) Due to the fact cos (π/4) =
√
2/2 and π/4 is in the interval

[0, π],

arccos

√
2

2
=

π

4
.

(c) From (b), we conclude that reference angle is π/4. Inverse
cosine sends negative values to numbers between π/2 and π,
so

cos−1

(︄
−
√
2

2

)︄
= π − π

4
=

3π

4
.

(d) The value 142 is not within the domain of arc cosine, because
142 is not within the range of cosine. Thus, arccos 142 is
undefined.

■

Proposition 8.4

(i) Suppose −1 ≤ x ≤ 1. Then

cos (arccosx) = x.

(ii) For 0 ≤ θ ≤ π, we have

arccos (cos θ) = θ.
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Example 8.11 Evaluate without a calculator.

(a) cos

(︃
arccos

15

49

)︃
and (b) cos−1 (cos 299◦).

Solution

(a) Since −1 ≤ 15/49 ≤ 1,

cos

(︃
arccos

15

49

)︃
=

15

49
.

(b) Because 270◦ < 299◦ < 360◦, the terminal side of 299◦ lies in
quadrant IV. As a result, arc cosine does not “undo” cosine.

Since cosine is positive in quadrant IV, we know that

0 ≤ cos−1 (cos 299◦) ≤ 90◦

because inverse cosines sends positive values to numbers in
the first quadrant. Furthermore, the reference angle will be
the same as that of 299◦, so the reference angle of the solution
is 360◦−299◦ = 61◦. When the original angle lies in the first
quadrant, the reference angle has the same measure as the
original angle. Therefore,

cos−1 (cos 299◦) = 61◦.

y

x

299◦
61◦

61◦

■
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Example 8.12 Simplify. Assume −1 ≤ x ≤ 1.
(a) sin

(︁
cos−1 x

)︁
, (b) tan (arccosx), and (c) sin

(︁
2 cos−1 x

)︁
.

Solution Suppose arccosx is a standard position angle. To avoid
the appearance of an unmerited correspondence, to will suppose
this unit circle lies on the uv-plane and has equation u2 + v2 = 1.
Because cos (arccosx) = x, the definition of cosine tells us that
arccosx intersects the unit circle at a point with a u-coordinate of
x. Building a triangle and using the Pythagorean Theorem, leads
us to conclude that the v-coordinate is

√
1− x2.

u

v

•

(︂
x,

√
1− x2

)︂

x

1 arccosx

We are ready to answer our questions.

(a) Due to the definition of sine, we have

sin
(︁
cos−1 x

)︁
=
√︁
1− x2.

(b) Similarly, the definition of tangent tells us

tan (arccosx) =

√
1− x2

x
.

(c) Because of Proposition 7.2 (i),

sin
(︁
2 cos−1 x

)︁
= 2 sin

(︁
cos−1 x

)︁
cos
(︁
cos−1 x

)︁
= 2

(︂√︁
1− x2

)︂
x

= 2x
√︁
1− x2.

■
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Let us examine arc cosine’s version of Proposition 8.2.

Proposition 8.5 For −1 ≤ x ≤ 1,

arccos(−x) = π − arccosx.

Proof Theorem 7.1 (ii) tells us

cos (π − arccosx) = cosπ cos (arccosx) + sinπ sin (arccosx)

= −1 · x+ 0

= −x.

This implies

arccos(−x) = arccos
(︂
cos (π − arccosx)

)︂
.

Proposition 8.4 (ii) tells us

arccos
(︂
cos (π − arccosx)

)︂
= π − arccosx

as long as 0 ≤ π − arccosx ≤ π.

Let us prove the inequality does, in fact, hold. We note

0 ≤ arccosx ≤ π
⇒ 0 ≥ − arccosx ≥ −π
⇒ π ≥ π − arccosx ≥ 0

Hence,
arccos(−x) = π − arccosx.

■
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Example 8.13 Use Proposition 8.5 to compute

arccos

(︄
−
√
3

2

)︄
.

Solution Since cos (π/6) =
√
3/2, Proposition 8.5 tells us

arccos

(︄
−
√
3

2

)︄
= π − arccos

√
3

2

= π − π

6

=
5π

6
.

■

Example 8.14 Assume

8 cosφ+ 8 = 5 sin2 φ.

Find φ when (a) 0 ≤ φ ≤ π and (b) 0 ≤ φ < 2π.

Solution We will use Pythagorean Identity (i) to convert the equa-
tion into one of only cosφ. Then we can move all the terms to
one side, factor, and utilize the zero-product property to solve the
equation for cosφ:

8 cosφ+ 8 = 5 sin2 φ
⇒ 8 cosφ+ 8 = 5− 5 cos2 φ
⇒ 5 cos2 φ+ 8 cosφ+ 3 = 0
⇒ (5 cosφ+ 3)(cosφ+ 1) = 0.

It follows that

cosφ = −3

5
or cosφ = −1.

We are ready to answer our questions.

(a) Since 0 ≤ φ ≤ π, we can take the arc cosine of both sides of
each equation. Hence,

φ = arccos

(︃
−3

5

)︃
≈ 2.214 or φ = arccos (−1) = π ≈ 3.142.
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(b) Suppose 0 ≤ φ < 2π. This adds no new solutions to

cosφ = −1.

However,
cosφ = −3/5

has another solution in quadrant III. The reference angle of
this solution is the same as that of arccos(−3/5), so its ref-
erence angle is arccos(3/5). Hence,

φ = π + arccos
3

5
≈ 4.069

is also a solution.

y

x

arccos
(︁
− 3

5

)︁

arccos 3
5

In summary, φ = arccos (−3/5) ≈ 2.214, π + arccos(3/5) ≈
4.069, or π ≈ 3.142.

■

8.4 Arc Tangent

Let us examine an inverse for f(x) = tanx. Tangent is not one-to-
one everywhere. However, after a quick examination of its graph,
we conclude that tangent is one-to-one, and therefore invertible, if
we restrict its to domain −π/2 < x < π/2.
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−π π

−2

−1

1

2

x = − 3π
2 x = −π

2 x = π
2 x = 3π

2

x

y

Definition 8.5 The arc tangent of x, denoted arctanx, is the
function defined by the relationship

y = arctanx if tan y = x

where x is any real number and −π/2 < y < π/2

Alternative notion for arc tangent is tan−1 x. Usually, when this
notation is used we say “inverse tangent of x”.

Example 8.15 Find the exact values without a calculator.
(a) tan−1 0, (b) arctan

√
3, and (c) tan−1

(︁
−
√
3
)︁
.

Solution

(a) We know

tan−1 0 = 0 because tan 0 = 0

and −π/2 < 0 < π/2,

(b) Since tan(π/3) =
√
3 and π/3 is in the interval (−π/2, π/2),

arctan
√
3 =

π

3
.
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(c) Using the result of (b), the reference angle has radian measure
π/3. Because arc tangent sends negative values to numbers
in the interval (−π/2, 0), we know −π/2 < tan−1

(︁
−
√
3
)︁
< 0.

Therefore,

tan−1
(︂
−
√
3
)︂
= −π

3
.

■

Proposition 8.6 For x any real number,

arctan(−x) = − arctanx.

In other words, f(x) = arctanx is an odd function.

Proof Consider
y = arctan(−x).

Then
tan y = −x implies − tan y = x.

Proposition 5.4 (iii) tells us − tan y = tan(−y). So,

tan(−y) = x
⇒ −y = arctanx
⇒ y = − arctanx
⇒ arctan(−x) = − arctanx.

■

Example 8.16 Use Proposition 8.6 to find

arctan(−1).

Solution Because tan(π/4) = 1,

arctan(−1) = − arctan 1 = −π

4
.

■
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Proposition 8.7

(i) For x a real number,

tan (arctanx) = x.

(ii) For −π/2 < θ < π/2,

arctan (tan θ) = θ.

Example 8.17 Evaluate without a calculator.

(a) tan

(︃
arctan

5− 29π

2π

)︃
and (b) tan−1 (tan 2.5).

Solution

(a) Due to Proposition 8.7,

tan

(︃
arctan

5− 29π

2π

)︃
=

5− 29π

2π
.

(b) Because π/2 < 2.5 < π, the terminal side of 2.5 lies in quad-
rant II. As a result, inverse tangent does not “undo” tangent.
Since tangent is negative in quadrant II,

−π

2
< tan−1 (tan 2.5) < 0.

The reference angle of 2.5 is π − 2.5. Hence,

tan−1 (tan 2.5) = −(π − 2.5) = 2.5− π.

x

y

2.5

2.5− π

π − 2.5

■
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Example 8.18 Simplify.

(a) csc
(︁
tan−1 x

)︁
(b) tan (2 arctanx)

(c) cos
(︁
2 tan−1 x

)︁
(d) sin

(︃
arctanx

2

)︃
, x < 0

Solution Suppose arctanx = tan−1 x is a standard position angle.
Much like in Example 12, we will suppose the unit circle lies in
the uv-plane and has equation u2 + v2 = 1. We do this because
the x-value in our example does not correspond to a value on the
horizontal axis. Assume the terminal side of arctanx intersects a
circle with center the origin and radius r. Because

tan (arctanx) = x =
x

1
,

we can suppose the terminal side of arctanx intersects the cir-
cle at the point (1, x). Then building a triangle and utilizing the
Pythagorean Theorem leads us to conclude that the radius of the
circle is r =

√
1 + x2.

u

v

•(︂
1, x
)︂

arctanx

We are ready to simplify the expressions.

(a) Using Theorem 5.1,

csc
(︁
tan−1 x

)︁
=

√
1 + x2

x
.
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(b) The Double Angle Identity (iii) gives

tan (2 arctanx) =
2 tan (arctanx)

1− tan2 (arctanx)
.

Then, because tan (arctanx) = x, we conclude

tan (2 arctanx) =
2x

1− x2
.

(c) The Double Angle Identity (ii) tells us

cos
(︁
2 tan−1 x

)︁
= 2 cos2

(︁
tan−1 x

)︁
− 1.

Because of Theorem 5.1, we know

cos
(︁
tan−1 x

)︁
=

1√
1 + x2

.

Substituting yields

cos
(︁
2 tan−1 x

)︁
= 2

(︃
1√

1 + x2

)︃2

− 1

= 2

(︃
1

1 + x2

)︃
− 1

=
2

1 + x2
− 1 + x2

1 + x2

=
1− x2

1 + x2
.

(d) Using the Half Angle Identity (i),

sin

(︃
arctanx

2

)︃
= ±

√︃
1− cos (arctanx)

2
.

Then Theorem 5.1, once again, leads us to the equation

cos
(︁
tan−1 x

)︁
=

1√
1 + x2

.
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So,

sin

(︃
arctanx

2

)︃
= ±

√︄
1− 1/

√
1 + x2

2

= ±

√︄√
1 + x2 − 1

2
√
1 + x2

= ±

√︄
1 + x2 −

√
1 + x2

2(1 + x2)
.

Because x < 0 we know −90◦ < arctanx < 0. This implies

−45◦ <
arctanx

2
< 0.

Since arctan(x)/2 is in quadrant IV, sine is negative. Thus,

sin

(︃
arctanx

2

)︃
= −

√︄
1 + x2 −

√
1 + x2

2(1 + x2)
.

■

Example 8.19 Find the exact value of

arctan

(︃
5

3

)︃
+ arctan

(︃
−1

4

)︃
.

Solution Suppose that α = arctan(5/3) and β = arctan(−1/4).
Then Theorem 7.1 (iii) says

tan(α+ β) =
tanα+ tanβ

1− tanα tanβ

=
5/3− 1/4

1− (5/3)(−1/4)

=
17/12

17/12

= 1.
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We want to take arc tangent of both sides to “undo” tangent. But
Proposition 8.7 tells us

arctan
(︂
tan(α+ β)

)︂
= α+ β,

only if −π/2 < α+ β < π/2.

Let us prove this inequality holds. We know 0 < α < π/2 and
−π/2 < β < 0, because arc tangent sends positive numbers to
values in the interval (0, π/2) and negative numbers to values in
the interval (−π/2, 0). It follows that

−π

2
< α+ β <

π

2
.

Therefore,

tan(α+ β) = 1 implies α+ β = arctan 1 =
π

4
.

■

8.5 Other Inverse Trigonometric Func-
tions

In this section, we explore the remaining three inverses: an inverse
for secant, cosecant, and cotangent. These inverses are a bit more
obscure and will, therefore, receive less treatment. The functions
secant, cosecant, and cotangent are not invertible on their entire
domains. As a result, we once again restrict their domains to obtain
invertibility.

Definition 8.6

• The arc secant of x, denoted arcsecx, is the function defined
by the relationship

y = arcsecx if sec y = x

for x ≤ −1 or 1 ≤ x and 0 ≤ y < π/2 or π/2 < y ≤ π.
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• The arc cosecant of x, denoted arccscx, is the function
defined by the relationship

y = arccscx if csc y = x

for x ≤ −1 or 1 ≤ x and −π/2 ≤ y < 0 or 0 < y ≤ π/2.

• The arc cotangent of x, denoted arccotx, is the function
defined by the relationship

y = arccotx if cot y = x

for x any real number and −π/2 < y < 0 or 0 < y ≤ π/2.

The notation sec−1 x, csc−1 x, and cot−1 x is also common. Usually
when this notation is used, we refer to it as the “inverse” of the
corresponding trigonometric function, e.g. we would read csc−1 x
as “inverse cosecant of x”.

To aid in the evaluation of the inverse trigonometric functions, we
include the following table.

θ 0
π

6

π

4

π

3

π

2

sec θ 1
2
√
3

3

√
2 2 undefined

csc θ undefined 2
√
2

2
√
3

3
1

cot θ undefined
√
3 1

√
3

3
0
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Example 8.20 Find the exact value of (a) arcsec
√
2 and (b)

sec−1
(︁
−
√
2
)︁
.

Solution

(a) The conclusion

arcsec
√
2 = 45◦,

follows from the fact that sec 45◦ =
√
2 and 45◦ is in the set

[0, 90◦) ∪ (90◦, 180◦],

(b) Inverse secant produces values in the interval (90◦, 180◦] when
evaluated at a negative number. Furthermore, due to (a), we
know the reference angle is 45◦. Hence,

sec−1
(︂
−
√
2
)︂
= 180◦ − 45◦ = 135◦.

■

Example 8.21 Evaluate (a) arccsc 2 and (b) csc−1(−2) without a
calculator.

Solution

(a) Since csc(π/6) = 2 and π/6 is in the set [−π/2, 0) ∪ (0, π/2],

arccsc 2 =
π

6
.

(b) Cosecant is negative when evaluated at angle measures in the
interval [−π/2, 0). From (a), we know the reference angle is
π/6. Hence,

csc−1(−2) = −π

6
.

■

Example 8.22 What are the exact numeric values of (a) arccot
√
3

and (b) cot−1(−
√
3)?

Solution
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(a) We have

arccot
√
3 = 30◦ because cot 30◦ =

√
3

and 30◦ is in the set (−90◦, 0) ∪ (0, 90◦],

(b) When the input of inverse cotangent is negative, its output is
in the interval (−90◦, 0). Furthermore, the result of (a) tells
us that the reference angle is 30◦. It follows that

cot−1
(︂
−
√
3
)︂
= −30◦.

■

Example 8.23 Find (a) arcsec

(︃
sec

9π

8

)︃
and (b) cot−1 (cot 271◦).

Solution

(a) The terminal side of 9π/8 lies in quadrant III, so arc secant
does not “undo” secant. Since secant is negative in quadrant
III,

π

2
< arcsec

(︃
sec

9π

8

)︃
≤ π.

The reference angle of 9π/8 is 9π/8− π = π/8. Thus,

arcsec

(︃
sec

9π

8

)︃
= π − π

8
=

7π

8
.

(b) The terminal side of 271◦ lies in quadrant IV, so inverse
cotangent does not “undo” cotangent. Since cotangent is
negative in quadrant IV,

−90◦ ≤ cot−1 (cot 271◦) < 0.

The reference angle of 271◦ is 360◦ − 271◦ = 89◦. Therefore,

cot−1 (cot 271◦) = −89◦.

■

In the remaining portion of this section, we will introduce a few
tricks to avoid arc secant, arc cosecant, and arc cotangent.
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Proposition 8.8

(i) For x ≤ −1 or 1 ≤ x,

arcsec x = arccos
1

x
.

(ii) For x ≤ −1 or 1 ≤ x,

arccsc x = arcsin
1

x
.

(iii) For all real numbers x ̸= 0,

arccot x = arctan
1

x
.

Proof We will prove (i) and leave the rest as exercises. Let arcsecx =
y. Then

sec y = x implies cos y =
1

x
.

It follows that y = arccos(1/x). Thus,

arcsecx = arccos
1

x
.

■

Example 8.24 Evaluate using Proposition 8.8.

(a) arccsc
2√
3
and (b) arccot (−1).

Solution

(a) arcsec
2√
3
= arccos

√
3

2
=

π

6
.

(b) arccot (−1) = arctan

(︃
1

−1

)︃
= arctan(−1) = −π

4
. ■
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8.6 Graphing Arc Sine, Arc Cosine, and
Arc Tangent

In this section, we will graph expressions containing arc sine, arc
cosine, and arc tangent. We will rely on knowledge of transforma-
tions. For information about how transformations affect graphs,
see Appendix C.

f(x) = arcsinx Key Points

−1 −1/2 1/2 1

−π
2

π
2

x

y

•

•

•

(︂
−1,−π

2

)︂

(0, 0)

(︂
1,

π

2

)︂
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Example 8.25 Graph

y = arcsin (x− 2) +
π

4
.

Solution This is the graph of y = arcsinx shifted right 2 units and
up π/4 units. Since the graph is shifted right 2 units, we increase
the x-values by 2. Similarly, since the graph is shifted up π/4 units,
we increase the y-values by π/4.

x y = arcsinx

−1 −π

2

0 0

1
π

2

−→

x y = arcsin(x− 2) +
π

4

−1 + 2 = 1 −π

2
+

π

4
= −π

4

0 + 2 = 2 0 +
π

4
=

π

4

1 + 2 = 3
π

2
+

π

4
=

3π

4

Hence, we have the following graph.

1/2 1 3/2 2 5/2 3

−π
4

π
4

π
2

3π
4

x

y

•

•

•

■
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f(x) = arccosx Key Points

−1 −1/2 1/2 1

π
2

π

x

y

•

•

•

(−1, π)

(︂
0,

π

2

)︂

(1, 0)

Example 8.26 Graph

y = −3

2
cos−1 x.

Solution This is the graph of y = cos−1 x stretched vertically by
a factor of 3/2 and reflected about the x-axis. As a result, we
multiply the y-values by −3/2, and leave the x-values unchanged.

x y = cos−1 x

−1 π

0
π

2

1 0

−→

x y = − 3
2 cos

−1 x

−1 −3π

2

0 −3

2

(︂π
2

)︂
= −3π

4

1 −3

2
(0) = 0
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Thus, the graph of y = (−3/2) cos−1 x must be as shown below.

−1 −1/2 1/2 1

− 3π
2

−π

−π
2

x

y

•

•

•

■

Key Horizontal
f(x) = arctanx Points Asymptotes

−3 −2 −1 1 2 3
−π

4

π
4

y =
π

2

y = −π

2

x

y

•

•

•
(︂
−1,−π

4

)︂
(0, 0)(︂
1,

π

4

)︂
y =

π

2

y = −π

2
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Example 8.27 Graph

y = arctan
x

2
.

Solution This is the graph of y = arctanx stretched horizontally
by a factor of 2. So, we double all of the x-values, and leave the
y-values unchanged.

x y = arctanx

−1 −π

4

0 0

1
π

4

−→

x y = arctan x
2

2(−1) = −2 −π

4

2(0) = 0 0

2(1) = 2
π

4

Horizontal stretches do not affect horizontal asymptotes. It follows
that the horizontal asymptotes are still

y = −π

2
and y =

π

2
.

Therefore, the graph of y = arctan(x/2) is as shown below.

−4 −2 2 4

−π
4

π
4

x

y

y =
π

2

y = −π

2

•

•

•

■

247



Example 8.28 Graph

y = tan−1(1− x)− π.

Solution Let us rewrite this into a more tractable form:

y = tan−1
(︂
− (x− 1)

)︂
− π.

The graph is y = arctanx reflected about the y-axis, then shifted
right 1 unit. It is also shifted π units down. So, negate the x-values,
add 1 to them, and subtract π from the y-values.

x y = arctanx

−1 −π

4

0 0

1
π

4

−→

x y = tan−1(1− x)− π

−(−1) + 1 = 2 −π

4
− π = −5π

4

−0 + 1 = 1 0− π = −π

−1 + 1 = 0
π

4
− π = −3π

4

Furthermore, because the graph of y = arctanx is shifted π units
down, the horizontal asymptotes are

y = −π

2
− π = −3π

2
and y =

π

2
− π = −π

2
.

This yields the graph shown.

−2 −1 1 2 3 4

− 5π
4

−π

− 3π
4

−π
4

x

y

y = −π

2

y = −3π

2

•

•

•

■
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8.7 Exercises

x f(x)
−5 1
−3 −3
−1 −7
0 5
1 2
3 −5
5 −1

** Exercise 1

Consider the table above. Sup-
pose the inverse of f is the func-
tion g. Find each of the follow-
ing.

(a) g (−7)

(b) g (1)

(c) g (2)

(d) g
(︂
f(−5)

)︂

(e) f
(︂
g(2)

)︂
(f) f

(︂
g
(︁
f(0)

)︁)︂
(g) g

(︂
g(−3)

)︂
(h) g

(︂
g(−1)

)︂

** Exercise 2

Use the horizontal line test to
determine the invertibility of the
functions corresponding to the
graphs on page 254. Suppose
each functions’ domain is con-
tained in the x-axis shown.

** Exercise 3

Repeat Exercise 2, but use the
graphs on pages 180 and 181.

** Exercise 4

For each graph on page 254 cor-
responding to a non-invertible
function, find two connected in-
tervals on which the function
can be restricted to make it in-
vertible.

** Exercise 5

Prove f is not one-to-one by
finding u and v such that

u ̸= v and f(u) = f(v),

where f(x) = . . .

(a) x2 − 6x+ 5

(b) cos 2x

(c) |x|

(d) 2− tanx

** Exercise 6

Determine which functions are
invertible.

(a) f(x) = 2x− 7

(b) g(x) = 1− sinπx

(c) h(x) = x2 + 4x+ 4

(d) i(x) = − |x− 2|
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* Exercise 7

Find the degree measure with-
out a calculator.

(a) arctan 1

(b) sin−1
√
3

2

(c) arccos 1

(d) cos−1 0

(e) arcsin
1

2

(f) tan−1
√
3

3

* Exercise 8

Compute the radian measure
without a calculator.

(a) arcsin 0

(b) cos−1
√
2

2

(c) arcsin 1

(d) tan−1
√
3

(e) arctan 0

(f) cos−1
1

2

** Exercise 9

Determine the degree measure
without a calculator. Some val-
ues may be undefined.

(a) arccot 0

(b) tan−1
(︃
− 3√

3

)︃

(c) arcsin

(︄
−
√
3

2

)︄
(d) sin−1(−1)

(e) arccos

(︃
−1

2

)︃

(f) sec−1
2
√
3

3

** Exercise 10

Find the radian measure with-
out a calculator. Some values
may be undefined.

(a) arccsc
(︁
−
√
2
)︁

(b) cot−1 1

(c) arcsin

(︃
− 3√

12

)︃

(d) cos−1
√
5

2

(e) arccot

(︃
− 3√

3

)︃
(f) sec−1

1

2

* Exercise 11

Suppose x = 2/5. Evaluate.

(a) sin (arcsinx)

(b) cos
(︁
cos−1 x

)︁
(c) tan (arctanx)
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(d) csc (arcsinx)

(e) cos
(︁
sec−1 1

x

)︁
(f) cot (arctanx)

* Exercise 12

Let θ = 25◦. Evaluate.

(a) arccos (cos θ)

(b) sin−1 (sin θ)

(c) arctan (cot θ)

(d) cos−1 (sin θ)

** Exercise 13

Repeat Exercise 12 but with θ =
155◦.

** Exercise 14

Assume φ = 6π/5. Evaluate.

(a) arccos (cosφ)

(b) tan−1 (tanφ)

(c) arcsec (secφ)

(d) csc−1 (secφ)

(e) arccot (tanφ)

(f) sec−1 (cscφ)

** Exercise 15

Repeat Exercise 14 but with
φ = 9π/5.

** Exercise 16

Find all θ in the interval
[0, 360◦).

(a) 3− 5 sin θ = 4

(b) 7 cos θ + 4 = 9

(c) tan θ + 11 = 5

(d) 3 cos θ + 5 = 1

(e) 9 sin2 θ = 1

** Exercise 17

Solve for φ. Suppose φ is in the
interval [−π/2, π/2].

(a) 5 cscφ+ 2 cot2 φ = 1

(b) 2 sec2 φ = 3 tanφ+ 1

(c) csc2 φ+ 8 cotφ = −6

(d) 28 sinφ+ 5 cos 2φ = −1

** Exercise 18

Repeat Exercise 17 but with φ
in the interval [0, 2π)

** Exercise 19

Find all θ in the interval
[0, 180◦].

(a) 6 sin2 θ = 13 cos θ + 1

(b) 2 tan2 θ + 13 sec θ = 5

(c) cos 2θ + 2 cos θ = 11

(d) tan2 θ − 3 sec θ = 53
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** Exercise 20

Repeat Exercise 19 but with θ
in the interval (−180◦, 180◦]

** Exercise 21

Write each of the following in
the form

y = A sin (Bx+ C) .

Use Example 7.4 as a templet.

(a) y = 3 sin 2x+ 4 cos 2x

(b) y = 12 cosx− 5 sinx

(c) y = 12 sin
x

2
− 9 cos

x

2

(d) y = −7 sinx− 24 cosx

** Exercise 22

Suppose α = arcsinx. Find the
values of the six trigonometric
functions evaluated at α.

** Exercise 23

Let β = cot−1 2x. What are the
values of the six trigonometric
functions evaluated at β?

** Exercise 24

Assume θ = arccos(x/3). Sim-
plify each of the following.

(a) sin 2θ

(b) cos 2θ

(c) tan 2θ

(d) csc 2θ

*** Exercise 25

Suppose φ = arccscx and x > 0.
Compute each of the following.

(a) sin
φ

2

(b) cos
φ

2

(c) tan
φ

2

(d) cot
φ

2

*** Exercise 26

Let θ = arcsec 2x and x < 0.
Simplify each of the following.

(a) sin
θ

2

(b) cos
θ

2

(c) tan
θ

2

(d) cot
θ

2

** Exercise 27

Assume α = arcsin 4x and β =
arccos 5x. Compute each of the
following.

(a) sin(α+ β)

(b) cos(α− β)

(c) tan(α+ β)

*** Exercise 28

Find the exact value of α−β for
each pair of α and β.

(a) Suppose

α = arctan
2
√
3

3

β = arctan

√
3

5
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(b) Suppose

α = arctan
1

7

β = arctan
4

3

*** Exercise 29

Prove the following are identi-
ties.

(a) sin−1 x+ cos−1 x =
π

2

(b) arctanx+ arccotx =
π

2

(c) sec−1 x+ csc−1 x =
π

2

** Exercise 30

Prove Proposition 8.8 (ii) and
(iii).

** Exercise 31

Graph.

(a) y = π + arcsin

(︃
x− 1

2

)︃
(b) y = − cos−1(x+ 1)

(c) y = 2arcsin(−x)

(d) y = 1− arccos
(︂x
3

)︂

(e) y = 1
2 sin

−1
(︃
x− 4

7

)︃
(f) y = −2 arccos (2x+ 4)

** Exercise 32

Graph. Include asymptotes.

(a) y =
3

4
arctan(−x)

(b) y = 2− arctan

(︃
2x

5

)︃
(c) y =

π

4
+ arctan

(︃
x+

2

3

)︃
(d) y = − tan−1(x− 2)

** Exercise 33

Write corresponding functions.

(a) The graph of arc sine
stretched horizontally by a
factor of 2 and shifted up
π/2 units.

(b) The graph of arc cosine
reflected about the y-axis
and stretched vertically by
a factor of 7.

(c) The graph of arc tangent
reflected about the x-axis
shifted left 3 units.

** Exercise 34

Write equations for the graphs
shown on page 255.
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x

y

−2 −1 1 2

•◦

x

y

1 2 3 4

• •

(a) (b)

x

y

−2 −1 1 2

◦

•

x

y

1 2 3 4

•

•

(c) (d)

x

y

1 2 3 4

x = 2.5

x

y

−2 −1 1 2
•

◦

(e) (f)
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x

y

−1 1

−π

π

•

•

•

x

y

−2 −1
−π

4

π
4

y = π
2

y = −π
2

•

•

•

(a) (b)

x

y

−1 1

π
2

π

•

•

•

x

y

− 3
2 − 1

2
1
2

π
6

π
3

•

•

•

(c) (d)

x

y

−π π

− 3π
4

−π
2

−π
4

y = −π
•

•

•

x

y

1 2
−π

4

π
4

3π
4

•

•

•

(e) (f)
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Chapter 9

Oblique Triangles

Definition 9.1

• A triangle is oblique if contains no right angles. In other
words, an oblique triangle is a triangle that is either acute or
obtuse.

• To solve a triangle is to find all of its side lengths and angle
measures.

We dedicate this chapter to the study of solving oblique triangles.
Readers are assumed to have knowledge of Chapters 1, 2, 5, and
8. In particular, the reader needs a solid command of the Isosce-
les Triangles Theorem (Theorem 1.2), knowledge of the triangle
congruence postulates and theorems (Section 2.2), and an under-
standing of arc sine and arc cosine (Sections 8.2 and 8.3).

The congruence postulates and theorems provide a criteria for
uniqueness of a triangles. When a triangle is uniquely determined
by the given information, we can find its side lengths and angle
measures. Sometimes this will require inverse trigonometric func-
tions.

It is imperative you have a scientific calculator and you are knowl-
edgeable of its functionality with regard to trigonometry. It will be
used extensively in the examples and exercises. We will use degree
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measures exclusively, so we recommend changing your calculator
settings to degree mode.

Before we begin solving oblique triangles, let us introduce a con-
vention to simplify our notation. Some readers may note that this
is the same convention we used in Chapter 4 for right triangles.

•

•
•

W

X

Y

When referencing triangles, upper-
case letters represent vertices, and
their corresponding lowercase letters
represent the sides opposite.

For example, in △WXY

w = XY, x = WY, and y = WX.

9.1 Law of Cosines

•

•

•

c a

bA

B

C

Theorem 9.1 (Law of Cosines) Consider △ABC.

a2 = b2 + c2 − 2bc cosA
b2 = a2 + c2 − 2ac cosB
c2 = a2 + b2 − 2ab cosC

We will use the Law of Cosines to solve triangles that are unique
due to the SAS or SSS congruence postulate.

9.1.1 Unique Triangle Due to SAS

Example 9.1 In △TUV , u = 3, v = 4, and m∠T = 140◦. Solve
△TUV .
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Solution

•

••

T

UV

3 4140◦

The Law of Cosines tells us

t2 = u2 + v2 − 2uv cosT
= 32 + 42 − 2(3)(4) cos 140◦

= 25− 24 cos 140◦

≈ 43.385

⇒ t ≈
√
43.385

≈ 6.587.

Let us find m∠U next. Using the Law of Cosines, we have

t2 + v2 − 2tv cosU = u2

⇒ 6.5872 + 42 − 2(6.587)(4) cosU ≈ 32

⇒ 59.385− 52.696 cosU ≈ 9
⇒ −52.696 cosU ≈ −50.385
⇒ cosU ≈ 0.956

Therefore,
m∠U ≈ arccos (0.956) ≈ 17.031◦.

Because the Triangle Sum Theorem states that the sum of the
interior angle measures of a triangle is 180◦,

m∠T +m∠U +m∠V = 180◦

⇒ 140◦ + 17.031◦ +m∠V ≈ 180◦

⇒ m∠V ≈ 22.969◦.

■
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9.1.2 Unique Triangle Due to SSS

•

•

•

17

27

33

X

Y

Z

Example 9.2 Solve △XY Z.

Solution Let us find m∠X. The Law of Cosines says

y2 + z2 − 2yz cosX = x2

⇒ 332 + 172 − 2(33)(17) cosX = 272

⇒ 1378− 1122 cosX = 729
⇒ −1122 cosX = −649

⇒ cosX =
59

102
.

It follows that

m∠X = arccos
59

102
≈ 54.660◦.

To find m∠Y , we again use the Law of Cosines:

x2 + z2 − 2xz cosY = y2

⇒ 272 + 172 − 2(27)(17) cosY = 332

⇒ 1018− 918 cosY = 1089
⇒ −918 cosY = 71

⇒ cosY = − 71

918
.

So,

m∠Y = arccos

(︃
− 71

918

)︃
≈ 94.436◦.
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All that is left ism∠Z. Since the sum of the interior angle measures
of a triangle is 180◦,

m∠X +m∠Y +m∠Z = 180◦

⇒ 54.660◦ + 94.436◦ +m∠Z ≈ 180◦

⇒ m∠Z ≈ 30.904◦.

■

9.2 Law of Sines in Unambiguous Cases

•

•

•

c a

bA

B

C

Theorem 9.2 (Law of Sines) Consider △ABC.

sinA

a
=

sinB

b
=

sinC

c
.

We can use the Law of Sines when the given information falls into
either the AAS, ASA, or SSA category. The AAS and ASA con-
gruence postulates guarantee a unique triangle, so solving triangles
when the givens are in the AAS or ASA category is more straight-
forward. In contrast, SSA does not always guarantee a unique
triangle, so it is harder to use the Law of Sines to solve this type
of problem. We therefore delay the analysis of the SSA category
until Section 9.3. Because the Law of Sines is computationally eas-
ier than the Law of Cosines, we will sometimes use it to simplify
calculations within the SAS and SSS categories.
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9.2.1 Unique Triangle Due to AAS

•

• •

W

X Y6

11◦

29◦

Example 9.3 Solve △WXY .

Solution Let us find y. Using the Law of Sines, we have

sinW

w
=

sinY

y
implies

sin 11◦

6
=

sin 29◦

y
.

It follows that

y =
6 sin 29◦

sin 11◦
≈ 15.245.

Let us find m∠X. Due to the Triangle Sum Theorem,

m∠W +m∠X +m∠Y = 180◦ implies m∠X = 140◦.

Lastly, we obtain x via the Law of Sines, which gives

sinW

w
=

sinX

x
implies

sin 11◦

6
=

sin 140◦

x
.

A bit of algebra shows

x =
6 sin 140◦

sin 11◦
≈ 20.212.

■
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9.2.2 Unique Triangle Due to ASA

When the uniqueness of a triangle is obtained by ASA, the ideas
needed to solve the triangle are almost identical to those in the AAS
category. Simply use the Triangle Sum Theorem to determine the
angle measure opposite the given side length and then continue as
previously demonstrated. Despite ASA’s computational similarity
to AAS, we will include an example for easy reference and for
completeness.

• •

•

P Q

R

5

30◦ 15◦

Example 9.4 Solve △PQR.

Solution We need an angle opposite a given side, so let us find
m∠R. Due to the Triangle Sum Theorem,

m∠P +m∠Q+m∠R = 180◦ implies m∠R = 135◦.

To find p and q, we will use the Law of Sines. We have

sinP

p
=

sinR

r
implies

sin 30◦

p
=

sin 135◦

5
.

It follows that

p =
5 sin 30◦

sin 135◦
≈ 3.536.

Furthermore,

sinQ

q
=

sinR

r
implies

sin 15◦

q
=

sin 135◦

5
.

So,

q =
5 sin 15◦

sin 135◦
≈ 1.830.

■
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9.2.3 Law of Sines to Simplify Calculations

We can use the Law of Sines to find the angle measures of a triangle.
This is helpful because the Law of Sines is computationally easier
than the Law of Cosines. However, be careful because the range
of arc sine does not include angle measures greater than 90◦. Due
to this quirk, the Law of Sines is not well suited for finding obtuse
angle measures.

We recommend avoiding the Law of Sines when the angle could be
obtuse. The Isosceles Triangle Theorem tells us that the angle of
largest measure is opposite the longest side. Since there can only
be one obtuse angle in a triangle, it would have to be opposite the
longest side. So, let us adopt the following convention:

Do not use the Law of Sines to find the angle measure
opposite the longest side. Either find a different angle
measure or use the Law of Cosines.

• •

•

I J

K

76

25◦

Example 9.5 Solve △IJK.

Solution We need to have the side length opposite an angle to use
the Law of Sines. So, we will use the Law of Cosines first to find
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k:
k2 = i2 + j2 − 2ij cosK

= 72 + 62 − 2(7)(6) cos 25◦

= 85− 84 cos 25◦

≈ 8.870

⇒ k ≈
√
8.870

≈ 2.978.

We now have the Law of Sines at our disposal. Since ∠I could be
obtuse, we will avoid using the Law of Sines to find its measure.

Instead, we will use the Law of Sines to find m∠J . The Law of
Sines says

sin J

j
=

sinK

k
implies

sin J

6
≈ sin 25◦

2.978
.

Multiplying by six yields

sin J ≈ 6 sin 25◦

2.978
.

It follows that

m∠J ≈ arcsin

(︃
6 sin 25◦

2.978

)︃
≈ 58.364◦.

We will find m∠I using the Triangle Sum Theorem:

m∠I +m∠J +m∠K = 180◦

⇒ m∠I + 58.364◦ + 25◦ ≈ 180◦

⇒ m∠I ≈ 96.636◦.

■

To demonstrate why we do not use the Law of Sines to find the
angle measure opposite the longest side, let us try to find m∠I in
Example 5 using the Law of Sines:

sin I

i
=

sinK

k
implies

sin I

7
≈ sin 25◦

2.978
.

Then multiplying by 7 gives us

sin I ≈ 7 sin 25◦

2.978
≈ 0.993.
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This statement is true. However,

arcsin (sin I) ̸= m∠I,

because ∠I is obtuse, so we cannot use arc sine to solve for m∠I.
Indeed, Example 5 showed

m∠I ≈ 96.636◦ but arcsin (0.993) ≈ 83.411◦.

•

•

•

L

M

N

2

4

3

Example 9.6 Solve △LMN .

Solution We need to use the Law of Cosines to find the first an-
gle measure, because the Law of Sines only works when an angle
measure and its opposite side length are known. Let us find m∠L
first, because it is opposite the longest side, so we would not the
Law of Sines to find it anyway.

m2 + n2 − 2mn cosL = ℓ2

⇒ 32 + 22 − 2(3)(2) cosL = 42

⇒ 13− 12 cosL = 16

⇒ cosL = −1

4
.

Therefore,

m∠L = arccos

(︃
−1

4

)︃
≈ 104.478◦.

We can use the Law of Sines to find either of the other two angles.
Let us find m∠M . The Law of Sines says

sinM

m
=

sinL

ℓ
implies

sinM

3
=

sin(104.478◦)

4
.
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Multiplying by three yields

sinM =
3 sin(104.478◦)

4
.

This implies

m∠M = arcsin

(︃
3 sin 104.478◦

4

)︃
≈ 46.567◦.

Then the Triangle Sum Theorem tells us:

m∠L+m∠M +m∠N = 180◦

⇒ 104.478◦ + 46.567◦ +m∠N ≈ 180◦

⇒ m∠N ≈ 28.955◦.

■

9.3 Law of Sines and SSA

We will now consider triangles where the given information falls
into the SSA category. When two side lengths and the non-included
angle measure of an oblique triangle are given, we will use the Law
of Sines to solve when possible. However, great care must be taken,
because SSA is not sufficient to determine the existence of a unique
triangle.

Indeed, if the given information falls into the SSA category, there
are three potential outcomes: either no triangle, one triangle, or
two triangles can be formed. Our goal is to develop a protocol to
determine which of these outcomes occurs for each particular set
of givens.

Consider △ABC. Assume that the givens are m∠A, length a, and
length c. Our analysis breaks down into three subsections:

• ∠A obtuse,

• ∠A right, and

• ∠A acute.
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9.3.1 Given Angle is Obtuse

When m∠A > 90◦, either one or no triangle can be formed with
the given information.

(i) If a > c, then △ABC is unique.

(ii) If a ≤ c, then no triangle can be formed with the given infor-
mation.

•

•

•

c
a

A
(i)

•

•

•
c

a

A
(ii)

If the given information falls into case (i), use the Law of Sines to
determine all the lengths and unknown angle measures.

On the other hand, if the givens put us into case (ii), no triangle
can be formed. As a result, we are done because it is impossible to
solve a triangle that does not exist.

•

•

•
A

B

C

3

7

100◦

Example 9.7 Suppose m∠A = 100◦, a = 7, and c = 3. Solve
△ABC.

Solution Because ∠C is obtuse and a > c, we are in case (i). Let
us use the Law of Sines.
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We will find m∠C first:

sinC

c
=

sinA

a
implies

sinC

3
=

sin 100◦

7
.

It follows that

sinC =
3 sin 100◦

7
.

Ergo,

m∠C = arcsin

(︃
3 sin 100◦

7

)︃
≈ 24.965◦.

To find m∠B, we will utilize the Triangle Sum Theorem. It tells
us

m∠A+m∠B +m∠C = 180◦ implies m∠B ≈ 55.035◦.

Let us find b via the Law of Sines. We have

sinB

b
=

sinA

a
implies

sin 55.035◦

b
≈ sin 100◦

7
.

Therefore,

b ≈ 7 sin 55.035◦

sin 100◦
≈ 5.825.

■

Example 9.8 Use a theorem from the text to explain why no
triangle can be formed if ∠A is obtuse and a ≤ c.

Solution The Isosceles Triangles Theorem (Theorem 1.2) says that
the angle of largest measure is opposite the longest side. A triangle
can have at most one obtuse angle, which means that the obtuse
∠A must have the largest measure. Hence, a must have the longest
length. This would contradict the assumption a ≤ c. Therefore,
no such triangle can be formed. ■

9.3.2 Given Angle is Right

When ∠A is right, either one or no triangle can be formed with the
given information.

(i) If a > c, then △ABC is unique.
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(ii) If a ≤ c, then no triangle can be formed with the given infor-
mation.

If ∠A is a right angle and the length of hypotenuse a is longer than
the length of leg c, then △ABC is a right triangle. As a result,
there is no need for the Law of Cosines or Sines. We can use the
techniques studied in Chapter 4 to solve the triangle.

In contrast, if ∠A is right and a is not longest, then no triangle
can be formed. The hypotenuse is always the longest side of a
triangle. Supposing otherwise is a contradiction of the Isosceles
Triangle Theorem (Theorem 1.2).

Example 9.9 Solve △ABC or explain why no triangle can be
formed with the given information.

(a) m∠A = 90◦, a = 10, and c = 7.

(b) m∠A = 90◦, a = 10, and c = 12.

Solution

•

•

•

B

AC

10
7

(a) Since a > c, a triangle can be formed.
Using the Pythagorean Theorem,

102 = 72+b2 implies b =
√
51 ≈ 7.141.

Furthermore,

cosB =
7

10

implies

m∠B = arccos
7

10
≈ 46.573◦.

To find m∠C, we note

m∠A+m∠B +m∠C = 180◦ implies m∠C ≈ 44.427◦.

(b) The hypotenuse a is always the longest side of a right triangle,
but a < c. This means the given information does not form
a triangle. ■
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9.3.3 Given Angle is Acute

When ∠A is acute, either zero, one, or two triangles can be formed
with the given information.

(i) If a < c sinA, then no triangle can be formed with the given
information.

(ii) If a = c sinA, then △ABC is unique.

(iii) If c sinA < a < c, then two triangles can be formed with the
given information.

(iv) If a ≥ c, then △ABC is unique.

c
c sinA

a

•

•

•

•
A E

B

(i)

c
a = c sinA

•

•

•• •
A E

B

(ii)

c
aa

•

•

•• •
A E

B

(iii)

c

c sinA

a

•

•

••
A E

B

(iv)

The shortest segment between B and ray
−→
AE is perpendicular to

the ray. This implies its length is c sinA.

In case (i), we assumed a < c sinA. Because the shortest distance

between B and
−→
AE is c sinA, it is impossible for the segment to

reach the ray. Hence, no triangle can be formed.

In case (ii), we supposed a = c sinA. Since the shortest distance

that can reach
−→
AE is a = BC, the segment corresponding to a is
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perpendicular to
−→
AE. Uniqueness follows from the HL Theorem

(Theorem 2.2).

In case (iii), we hypothesized that c sinA < a < c. As you can see
from the diagram, the segment corresponding to a could intersect
−→
AE at either of two points. This implies that two triangles can
be formed under this scenario. Use the Law of Sines to determine
the side lengths and angle measures of both triangles. A helpful
observation is that ∠C is acute in one of the triangles and obtuse
in the other.

In case (iv), we presumed that a ≥ c. The segment corresponding

to a only intersects
−→
AE at one point. There is no intersection due

to a leftward swing because it would contradict the assumption
that ∠A is an interior angle. Use the Law of Sines to solve the one
triangle. Note that ∠C is acute in this triangle.

Example 9.10 Suppose m∠A = 35◦, a = 1, and c = 5. Solve
△ABC or state that no such triangle exists.

Solution

•

•
•

A

5

1

5 sin 35◦

35◦

Because
c sinA = 5 sin 35◦ ≈ 2.867

and a = 1, we have
a < c sinA.

This is case (i). Thus, no triangle can be formed with the given
information. The side a is too short to reach the ray. ■
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Example 9.11 Consider △ABC, where m∠A = 45◦, a = 9, and
c = 12. Solve all triangles △ABC which satisfy the given criteria.

Solution We have

c sinA = 12 sin 45◦ ≈ 8.485.

Since c sinA < a < c, this is case (iii) and two triangles can be
formed. In one triangle ∠C is acute, and ∠C is obtuse in the
other.

•

•

•

12 9

45◦
A

B

C

∠C acute: Let us find m∠C. The Law of Sines says

sinC

c
=

sinA

a
implies

sinC

12
=

sin 45◦

9
.

It follows that

sinC =
4 sin 45◦

3
.

Because we are assuming ∠C is acute,

m∠C = arcsin

(︃
4 sin 45◦

3

)︃
≈ 70.529◦.

To find m∠B, note

m∠A+m∠B +m∠C = 180◦ implies m∠B ≈ 64.471◦.

Lastly, we need b, which we obtain using the Law of Sines:

sinB

b
=

sinA

a
implies

sin 64.471◦

b
≈ sin 45◦

9
.

Hence,

b ≈ 9 sin 64.471◦

sin 45◦
≈ 11.485.
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•

•

•

12 9

45◦
A

B

C

∠C obtuse: Due to the Law of Sines,

sinC

c
=

sinA

a
implies sinC =

4 sin 45◦

3
.

Since ∠C is obtuse, its terminal side lies in quadrant II when
placed in standard position. As a result, its reference angle is
arcsin (4 sin(45◦)/3). It follows that

m∠C = 180◦ − arcsin

(︃
4 sin 45◦

3

)︃
≈ 109.471◦.

Let us find m∠B. We know

m∠A+m∠B +m∠C = 180◦ implies m∠B ≈ 25.529◦.

Lastly, we get the length b using the Law of Sines. We have

sinB

b
=

sinA

a
implies

sin 25.529◦

b
≈ sin 45◦

9
.

So,

b ≈ 9 sin 25.529◦

sin 45◦
≈ 5.485.

■
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Example 9.12 Consider △ABC, where m∠A = 45◦, a = 13, and
c = 12. Solve all triangles △ABC which satisfy the given criteria.

Solution Since a ≥ c, the criteria above uniquely determines
△ABC.

•

•

•45◦

12 13

A

B

C

We obtain m∠C using the Law of Sines:

sinC

c
=

sinA

a
implies

sinC

12
=

sin 45◦

13
.

Multiplying by 12 gives

sinC =
12 sin 45◦

13
.

Since ∠C is acute,

m∠C = arcsin

(︃
12 sin 45◦

13

)︃
≈ 40.747◦.

To find m∠B, we utilize the Triangle Sum Theorem:

m∠A+m∠B +m∠C = 180◦ implies m∠B ≈ 94.253◦.

We can find b by observing

sinB

b
=

sinA

a
implies

sin 94.253◦

b
≈ sin 45◦

13
.

Thus,

b ≈ 13 sin 94.253◦

sin 45◦
≈ 18.334.

■
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9.3.4 Summary

Consider △ABC. Suppose we are given m∠A, a, and c.

• ∠A is obtuse.

(i) If a > c, then △ABC

is unique.

(ii) If a ≤ c, then no trian-

gle can be formed with

the given information.

• ∠A is right.

(i) If a > c, then △ABC

is unique.

(ii) If a ≤ c, then no trian-

gle can be formed with

the given information.

• ∠A is acute.

(i) If a < c sinA, then no

triangle can be formed

with the given informa-

tion.

(ii) If a = c sinA, then

△ABC is unique.

(iii) If c sinA < a < c, then

two triangles can be

formed with the given

information.

(iv) If a ≥ c, then △ABC

is unique.

Example 9.13 Determine whether zero, one, or two triangles sat-
isfy the given information.

(a) m∠A = 25◦, a = 10, and
c = 10.

(b) m∠A = 90◦, a = 15, and
c = 7.

(c) m∠A = 115◦, a = 3, and
c = 11.

(d) m∠A = 30◦, a = 7, and
c = 14.

(e) m∠A = 45◦, a = 25, and
c = 30.

(f) m∠A = 90◦, a = 9, and
c = 11.

(g) m∠A = 170◦, a = 100,
and c = 5.

(h) m∠A = 80◦, a = 17, and
c = 19.

Solution

(a) Since ∠A is acute and a ≥ c, there is one triangle which
satisfies the given information.
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(b) Because ∠A is right and a > c, only one triangle can be
formed using the information.

(c) Since ∠A is obtuse and a < c, no triangle meets the listed
criteria.

(d) Due to the fact that ∠A is acute and

c sinA = 14 sin 30◦ = 7 = a,

it follows that one triangle satisfies the given information.

(e) We were given that ∠A is acute. Furthermore, because

c sinA = 30 sin 45◦ ≈ 21.213,

we have c sinA < a < c. Hence, there are two triangles.

(f) Because ∠A is right and a < c, it is impossible to form a
triangle using the given criteria.

(g) Since ∠A is obtuse and a > c, one triangle can be constructed
using the information provided.

(f) We have
c sinA = 19 sin 80◦ ≈ 18.711.

So, a < c sinA. It follows that no triangle can be formed
with the listed criteria. ■

9.4 Proofs of the Laws of Cosines and
Sines

First, we will prove the Law of Cosines (Theorem 9.1) for △ABC.
In particular, we will prove

c2 = a2 + b2 − 2ab cosC.

The other two cases follow via relabeling.
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Proof Place side b on the positive x-axis, and point C at the origin.

x

y

•

•

•
C

B (a cosC, a sinC)

A (b, 0)b

a c

Point A has coordinates (b, 0) and Theorem 5.1 tells us that B has
coordinates (a cosC, a sinC).

Using the distance formula,

c =

√︂
(a cosC − b)

2
+ (a sinC − 0)

2
.

It follows that

c2 = (a cosC − b)
2
+ (a sinC)

2

= a2 cos2 C − 2ab cosC + b2 + a2 sin2 C

= a2 sinC + a2 cos2 C⏞ ⏟⏟ ⏞
a2

+b2 − 2ab cosC

= a2 + b2 − 2ab cosC.

■

The following proposition will help us prove the Law of Sines.

Proposition 9.1 Suppose that θ is an angle measure of a triangle.

sin(180◦ − θ) = sin θ.

Proof Using Theorem 7.1 (i),

sin(180◦ − θ) = sin 180◦ cos θ − cos 180◦ sin θ

= 0 cos θ − (−1) sin θ

= sin θ.
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■

It is time to prove the Law of Sines (Theorem 9.2). It says for
△ABC, we have

sinA

a
=

sinB

b
=

sinC

c
.

•

•

•
A

B

Cb

ah1

Proof Assume that ∠C has the largest measure of the three angles.
Our diagram shows ∠C as obtuse, but this need not be the case.

We see
b sinA = h1 and a sinB = h1.

So,

b sinA = a sinB implies
sinA

a
=

sinB

b
.

To obtain the last equation, we will break ∠C into two cases:

(i) m∠C < 90◦ and (ii) m∠C ≥ 90◦.

•

•

•
A

B

C

c a
h2

(i) We see
c sinA = h2 and a sinC = h2.

So,

c sinA = a sinC implies
sinA

a
=

sinC

c
.
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We conclude
sinA

a
=

sinB

b
=

sinC

c

for m∠C < 90◦.

(ii) Let m∠C = γ.

γ
•

•

•
A

B

C

c
a

h2

We see

c sinA = h2 and a sin(180◦ − γ) = h2.

Due to Proposition 9.1,

a sin(180◦ − γ) = a sin γ = h2.

So, we have

c sinA = a sin γ implies
sinA

a
=

sin γ

c
.

Since m∠C = γ,

sinA

a
=

sinB

b
=

sinC

c
.

■
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9.5 Exercises

* Exercise 1

State whether the given infor-
mation in △ABC places the tri-
angle into the category of SSS,
SAS, ASA, AAS, or SSA.

(a) m∠C = 37◦, a = 4, and
b = 7.

(b) m∠A = 115◦, m∠C =
13◦, and c = 15.

(c) a = 3, b = 9, and c = 11.

(d) m∠C = 100◦, b = 5, and
c = 7.

(e) m∠A = 25◦, m∠C = 30◦,
and b = 19.

(f) m∠B = 12◦, a = 10, and
c = 14.

(g) m∠A = 91◦, c = 5, and
a = 5.

(h) m∠B = 30◦, m∠C =
111◦, and c = 12.

* Exercise 2

For each set of givens in Exercise
1, is the Law of Cosines or Sines
needed to solve the triangle?

• •

•

Y

Z

X

y

z

x

Figure 1

** Exercise 3

Consider Figure 1, which is not
drawn to scale. Solve △XY Z.

(a) x = 5, y = 7, and z = 8.

(b) m∠Z = 174◦, x = 3, and
y = 17.

(c) m∠Y = 70◦, x = 50, and
z = 59.

(d) x = 4, y = 5, and z = 7.

** Exercise 4

Suppose the vertices and sides
are as shown in Figure 1. Solve
△XY Z. The triangle is not
drawn to scale.

(a) m∠X = 24◦, m∠Z =
111◦, and y = 3.

(b) m∠Y = 54◦, m∠Z = 83◦,
and x = 7.

(c) m∠Y = 71◦, m∠Z = 73◦,
and z = 2

(d) m∠X = 10◦, m∠Z = 97◦,
and z = 5.
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** Exercise 5

Solve △TUV when possible,
and say “no triangle” when it is
not. Assume . . .

(a) . . . m∠T = 155◦, t = 12,
and u = 11.

(b) . . . m∠V = 130◦, t = 21,
and v = 12.

(c) . . . m∠T = 90◦, t = 5, and
u = 12.

(d) . . . m∠U = 108◦, u = 39,
and v = 37.

(e) . . . m∠V = 90◦, t = 5, and
v = 8.

** Exercise 6

Determine whether there is a
△WXY that satisfies the given
criteria.

(a) m∠W = 30◦, w = 5, and
y = 10.

(b) m∠X = 45◦, x = 7, and
y = 12.

(c) m∠Y = arccos
3

5
, x = 10,

and y = 8.

** Exercise 7

There are two triangles △DEF
which satisfy the given criteria.
Solve them.

(a) m∠D = 35◦, d = 10, and
f = 15.

(b) m∠E = 65◦, d = 25, and
e = 23.

(c) m∠F = 22◦, e = 100, and
f = 49.

(d) m∠D = 59◦, d = 17, and
e = 18.

** Exercise 8

Consider △GHI. State whether
the given information forms
zero, one, or two triangles.

(a) m∠H = 115◦, g = 12, and
h = 17.

(b) m∠I = 45◦, g = 13, and
i = 19.

(c) m∠G = 90◦, g = 90, and
h = 100.

(d) m∠H = 20◦, h = 15, and
i = 53.

(e) m∠G = 42◦, g = 23, and
h = 32.

(f) m∠G = 100◦, g = 15, and
h = 10.

(g) m∠I = 30◦, g = 6, and
i = 3.

(h) m∠H = 90◦, g = 4, and
h = 7.

** Exercise 9

Use the given information of
△JKL to determine whether it
defines zero, one, or two trian-
gles.
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(a) m∠L = 113◦, k = 20, and
ℓ = 22.

(b) m∠K = 23◦, j = 50, and
k = 19.

(c) m∠L = 90◦, k = 35, and
ℓ = 21.

(d) m∠K = 170◦, j = 100,
and k = 22.

(e) m∠J = 20◦, j = 11, and
k = 10.

(f) m∠J = 77◦, j ≈ 116.924,
and ℓ = 120.

(g) m∠L = 61◦, k = 50, and
ℓ = 44.

(h) m∠J = 90◦, j = 13, and
k = 5.

** Exercise 10

Information about △PQR is
given. Use it to solve all possible
triangles which satisfy the given
information. When it is impos-
sible to form a triangle using the
given information, say so.

(a) m∠Q = 38◦, q = 42, and
r = 32.

(b) m∠R = 95◦, q = 8, and
r = 9.

(c) m∠P ≈ 67.380◦, p = 12,
and r = 13.

(d) m∠Q = 23◦, q = 7, and
r = 14.

(e) m∠Q = 108◦, q = 19, and
r = 13.

(f) m∠P = 45◦, p = 20, and
r = 14.

(g) m∠R = 90◦, q = 5, and
r = 3.

(h) m∠Q = 25◦, p = 51, and
q = 23.

(i) m∠P = 102◦, p = 10, and
r = 17.

** Exercise 11

Side lengths and an angle mea-
sure of △ABC are listed. Solve
the triangle(s) which satisfy the
given criteria.

(a) m∠C = 110◦, b = 10, and
c = 17.

(b) m∠A = 100◦, m∠C =
25◦, and c = 10

(c) m∠A = 40◦, a = 21, and
b = 30.

(d) m∠A = 90◦, a = 25, and
b = 15.

(e) m∠B = 25◦, m∠C = 45◦,
and a = 40.

(f) m∠B = 22◦, a = 10, and
c = 15.

(g) m∠C = 31◦, b = 37, and
c = 40.

(h) a = 10, b = 12, and c = 17

(i) m∠A = 60◦, a = 5
√
3,

and c = 10.
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Chapter 10

Area and Perimeter

In this chapter, we will use trigonometry to solve area and perime-
ter problems. A solid understanding of Section 1.5, Chapter 3,
Chapter 5, and Chapter 9 is necessary. We will use scientific cal-
culators in this chapter.

10.1 Triangles

20

•

•

•
A

B

C

c

b

25◦

Example 10.1 Find (a) the area and (b) the perimeter of △ABC.

Solution

(a) Recall that the area of a triangle is

1

2
bh,
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where b is the base and h is the height.

On △ABC, if a is the height, then b is the base. As a result,
we need to find b. Notice

tan 25◦ =
20

b
implies b =

20

tan 25◦
.

It follows that the area of △ABC is

1

2

(︃
20

tan 25◦

)︃
(20) =

200

tan 25◦
≈ 428.901.

(b) The perimeter is the sum of the side lengths. We have a and
b, and we need to find c. Using right triangle trigonometry,
we have

sin 25◦ =
20

c
implies c =

20

sin 25◦
.

Thus, the perimeter of △ABC is

a+ b+ c = 20 +
20

tan 25◦
+

20

sin 25◦
≈ 110.214.

■

•

•

•
P

Q

R

75◦

50◦

2

Example 10.2 Find the perimeter of △PQR.

Solution Our goal is to use the Law of Sines (Theorem 9.2), which
requiresm∠P . Since the sum of the interior angle measures is 180◦,

m∠P +m∠Q+m∠R = 180◦ implies m∠P = 55◦.
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So,
sinP

p
=

sinQ

q
implies q =

2 sin 75◦

sin 55◦

and
sinP

p
=

sinR

r
implies r =

2 sin 50◦

sin 55◦
.

Thus, the perimeter of △PQR is

p+ q + r = 2 +
2 sin 75◦

sin 55◦
+

2 sin 50◦

sin 55◦
≈ 6.229.

■

We could use basic trigonometry to find the area of oblique trian-
gles, like the one in Example 2. However, the next two propositions
provide easier routes.

A

B

C

a

b

c

•

•

•

Proposition 10.1 The area of △ABC is

bc sinA

2
=

ac sinB

2
=

ab sinC

2
.

Proof We will prove that the area of △ABC is ab sin(C)/2. The
proofs for the other two are nearly identical.

The area is one-half base times height. Suppose b is the length
of the base. All we need is the height. Place △ABC on the xy-
coordinate plane such that C is on the origin, and AC lies on the
positive x-axis.
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y

x
A

B

C
•

•

•

a

b

c

Theorem 5.1 tells us that B has coordinates (a cosC, a sinC). The
value a sinC is the height of triangle for 0 < m∠C < 180◦. Thus,
the area of △ABC is

1

2
b(c sinA) =

bc sinA

2
.

■

Example 10.3 Suppose m∠Y = 51◦ and x, y, and z are 5, 7, and
9, respectively. What is the area of △XY Z?

Solution We know the measure of ∠Y . The two adjacent sides, x
and z, have lengths 5 and 9. Hence, the area of triangle △XY Z is

xz sinY

2
=

(5)(9) sin 51◦

2
≈ 17.486.

■

A

B

C

a

b

c

•

•

•

Theorem 10.1 (Horen) Suppose s =
a+ b+ c

2
. Then the area

of △ABC is
A =

√︁
s(s− a)(s− b)(s− c).
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We omit the proof because it is very computationally intensive. It
follows from Proposition 10.1 and the Law of Cosines (Theorem
9.1).

•

•

•
T

U

V

15 13

14

Example 10.4 Find the area of △TUV .

Solution We have

s =
t+ u+ v

2

=
13 + 14 + 15

2
= 21.

Hence, the theorem of Horen tells us that the area of △TUV is

A =
√︁
s(s− t)(s− u)(s− v)

=
√︁
21(8)(7)(6)

= 84.

■
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10.2 Regular Polygons

Definition 10.1 A polygon is a closed geometric object that is
bounded by line segments.

(a) (b) (c)

Image (a) is a polygon because it is closed and is bounded by
segments. Image (b) is not a polygon because a portion of its
boundary is an arc instead of a line segment. Image (c) is not a
polygon because it is not closed.

Polygons are usually classified based on the number of sides they
contain.

Sides Name
3 triangle
4 quadrilateral
5 pentagon
6 hexagon
7 heptagon
8 octagon
9 nonagon
10 decagon
12 dodecagon

We refer to a polygon with n sides as an n-gon for n > 12 or n = 11.
A polygon of an unknown number of sides is sometimes referred to
as an n-gon as well.

Definition 10.2 A polygon is regular when all its interior angles
are congruent and all its side lengths are equal.

Examples of regular polygons include equilateral triangles and squares.

Definition 10.3
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• A circumradius is any of the line segments from the center
of a regular polygon to a vertex.

• An apothem is the line segment from the center of a regular
polygon to the midpoint of a side.

•

••

•

• •

•

apothem

circumradius

For any regular n-gon, all of the apothems have the same length,
and all of the circumradii have the same length as well.

Proposition 10.2 An apothem is perpendicular to the side it in-
tersects.

Proof Divide the regular polygon into isosceles triangles. One
triangle is shown below. We have labeled its vertices for ease of
reference; the segment AC is a side of the polygon and BD is its
apothem.

•

•

• •
A

B

C D

The length of apothem BD is equal to itself. The circumradii
AB and CB have equal lengths as well. We have that AD and
CD have the same length because the apothem bisects the side of
the polygon. Hence, △ABD is congruent to △CBD by the SSS
congruence postulate.
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It follows that ∠ADB is congruent to ∠CDB. Call m∠ADB =
m∠CDB = x.

Since the two angles form a linear pair, they are supplementary.
So,

m∠ADB +m∠CDB = 180◦ implies x = 90◦.

We conclude that ∠ADB and ∠CDB are right.

■

Example 10.5 Suppose an apothem of a regular pentagon has
length 20. Find (a) the perimeter and (b) the area of the pentagon.

Solution The idea is to break the regular pentagon into five tri-
angles, and use trigonometry to find the needed information.

• •

•

•

•

•

20

A complete circle has 360◦, so the vertex angle of each isosceles
triangle must have measure 350◦/5 = 72◦.

• •

•

20

x

72◦

36◦
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Let x be as shown in the diagram. Using trigonometry,

x = 20 tan 36◦,

which implies the length of the base is

2(20 tan 36◦) = 40 tan 36◦.

Since the length of the triangle’s base is also the side length of the
pentagon, we are ready to answer our questions.

(a) The regular pentagon has five sides, so the perimeter is

5 (40 tan 36◦) = 200 tan 36◦ ≈ 145.309.

(b) The area of each triangles is

1

2
(40 tan 36◦) (20) = 400 tan 36◦ ≈ 290.617.

There are a total of five triangles in the regular pentagon.
Hence, the area of the pentagon is

5 (400 tan 36◦) = 2000 tan 36◦ ≈ 1453.085.

■
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Example 10.6 A circumradius of a regular 15-gon has length 8.
Find (a) the area of the 15-gon and (b) the perimeter.

Solution

•

•

•
••

•
•

•

•

•
•

• •
•

•

8

24◦

•

The figure above illustrates our situation. The vertex angle of each
isosceles triangle has measure

360◦

15
= 24◦.

•

•

•

8
24◦

(a) The two adjacent sides of the vertex angle
both have length 8, because they are cir-
cumradii. Hence, Proposition 10.1 leads us
to conclude each triangle has area

(8)(8) sin 24◦

2
= 32 sin 24◦.

The 15-gon has fifteen triangles, so
the total area is

15 (32 sin 24◦) = 480 sin 24◦ ≈ 195.234.

(b) To find the perimeter, consider the isosceles triangle again.
Use the apothem to form two congruent right triangles as
shown on the next page.
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x

•
•

•

8

12◦

Let x be as shown in the diagram. Then

x = 8 sin 12◦.

Since the side length is double x, it must equal

2 (8 sin 12◦) = 16 sin 12◦.

The 15-gon has fifteen sides, so the perimeter is

15 (16 sin 12◦) = 240 sin 12◦ ≈ 49.899.

■
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Example 10.7 Imagine that the area of a regular hexagon is
150

√
3. Find the lengths of its (a) circumradii, (b) apothems, and

(c) sides.

Solution Divide the hexagon into six congruent triangles. Each
triangle has area 150

√
3/6 = 25

√
3, and each triangle’s vertex angle

has measure 360◦/6 = 60◦.

•

•

• •
A

B

C D

60◦

30◦

y

x

r

The hexagon’s circumradii have length r, its apothems have length
y, and its sides have length 2x.

(a) Proposition 10.1 tells us the area is

r2 sin 60◦

2
=

r2
√
3

4
.

It follows that

r2
√
3

4
= 25

√
3 implies r = 10.

Hence, its circumradii have length 10.

(b) We see △BCD is a 30◦ − 60◦ − 90◦ special right triangle, so
y = 5

√
3. This means the hexagon’s apothems have length

5
√
3 as well.

(c) Using the 30◦−60◦−90◦ special right triangle, we see x = 5.
Therefore, the regular hexagon has sides of length 10.

■
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10.3 Segments of Circles

Definition 10.4 A chord is a line segment connecting two points
on a circle.

•

•

• xθ

r

Proposition 10.3 Let x be the length of a chord contained on a
circle whose radius is length r. Suppose the chord subtends a central
angle of measure θ. Then the length of the chord is

x = 2r sin
θ

2
.

Proof The Law of Cosines tells us

x2 = r2 + r2 − 2(r)(r) cos θ = 2r2(1− cos θ).

Proposition 7.3 (i) says

sin2
θ

2
=

1− cos θ

2
.

It follows that

x2 = 2r2(1− cos θ)

= 4r2
(︃
1− cos θ

2

)︃
= 4r2 sin2

θ

2
.

Since 0 < θ ≤ 180◦ and r is a length, we know

sin
θ

2
> 0 and r > 0.
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This implies

x =

√︃
4r2 sin2

θ

2
= 2r sin

θ

2
.

■

120◦

30 •

•

• L

M

P

Example 10.8 Suppose LM is a chord of circle P . If MP = 30,
and m∠LPM = 120◦, what is the length of LM?

Solution Let x = LM , r = 30, and θ = 120◦. Then Proposition
10.3 tells us the length of chord LM is

x = 2r sin
θ

2

= 2(30) sin
120◦

2

= 30
√
3.

■

Definition 10.5 A segment of a circle is the region bounded
between a chord and the arc with the same endpoints.

To denote a segment of a circle, we write “segment ABC”. The
point written in the middle denotes the center of the circle.

The remainder of this section is dedicated to finding the perimeter
and area of the segments of circles.
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•

•

•

r

θ

A

B

C

Consider the figure above. Suppose m∠ABC = θ radians and the
radius of circle B is r.

To find the area of segment ABC proceed as follows.

1. Find the area of sector ABC via Proposition 3.3, which says the
area is

r2θ

2
.

2. Find the area of △ABC via Proposition 10.1, which says the
area is

r2 sin θ

2
.

3. The area of segment ABC is

r2θ

2
− r2 sin θ

2
.

The idea behind this procedure is to calculate the area of the entire
sector and the subtract the area of the isosceles triangle contained
within the circle. The result is the area of the segment.
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To find the perimeter of segment ABC proceed as follows.

1. Find the length of arc AC via Proposition 3.2, which says the
arc length is

rθ.

2. Find the length of chord AC via Proposition 10.3, which says
the length is

2r sin
θ

2
.

3. The perimeter of sector ABC is

rθ + 2r sin
θ

2
.

Example 10.9 Suppose circle Q has radius of length 15, and
m∠PQR = 135◦. Find (a) the area of and (b) the perimeter of
segment PQR.

Solution

135◦
15

•

•

•

P

Q

R

We need the radian measure of 135◦ for (a)
and (b). It is

135◦
(︂ π

180◦

)︂
=

3π

4
.

(a) The area of sector PQR is

152(3π/4)

2
=

675π

8
,

and the area of △PQR is

(15)2 sin 135◦

2
=

225
√
2

4
.

Hence, the area of segment PQR is

675π

8
− 225

√
2

4
≈ 185.522.

(b) The length of arc PR and chord PR are

15

(︃
3π

4

)︃
=

75π

4
and 2(15) sin

135◦

2
= 30 sin

135◦

2
,
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respectively. Therefore, the perimeter of segment PQR is

75π

4
+ 30 sin

135◦

2
≈ 86.621.

■

••

•

W
X

Y
115◦

Example 10.10 Suppose the area of segment WXY is 79.350, and
m∠X = 115◦. What is the length of the radius of circle X rounded
to the nearest whole number?

Solution To find the radius’s length r, we will find a formula for
the area of segment WXY in terms of r, and then set it equal to
79.350.

Since 115◦ = 23π/36 radians, the area of sector WXY is

r2(23π/36)

2
≈ 1.004r2.

Proposition 10.1 tells us the area of △WXY is

r2 sin 115◦

2
≈ 0.453r2.

It follows that

1.004r2 − 0.453r2 = 79.350
⇒ 0.551r2 = 79.350
⇒ r2 ≈ 144.011

⇒ r ≈
√
144.011

≈ 12.000

We conclude that the radius of circle X is about 12. ■
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••

•

T
U

V

4

3

Example 10.11 Suppose the radius of circle U is 3, and the length
of chord TV is 4. Find (a) the area of segment TUV and (b) the
perimeter of segment TUV .

Solution Let us find m∠U . Proposition 10.3 tells us

2(3) sin

(︃
m∠U
2

)︃
= 4.

It follows that

m∠U = 2arcsin
2

3
.

We will suppose m∠U is a radian measure and turn our calculator
to radian mode. We are ready to find our solutions.

(a) The areas of sector TUV and △TUV are

32
(︂
2 arcsin(2/3)

)︂
2

≈ 6.568 and
32 sin

(︂
2 arcsin(2/3)

)︂
2

≈ 4.472,

respectively. We conclude that the area of segment TUV is
about

6.568− 4.472 = 2.096.

(b) The length of arc TV is

3

(︃
2 arcsin

2

3

)︃
≈ 4.378.

It follows that the perimeter of segment TUV is about

4.378 + 4 = 8.378.

■
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10.4 Exercises

•

•

•
X

Y

Z

x

y

z

Figure 1

* Exercise 1

Consider Figure 1. Find
the area and the perimeter of
△XY Z.

(a) Suppose x = 10 and z =
15.

(b) Let m∠X = 20◦ and x =
12.

(c) Say m∠X = 35◦ and y =
17.

(d) Assume m∠X = 50◦ and
z = 11.

(e) Given that m∠Y = 44◦

and x = 32

(f) Imagine that m∠Y = 65◦

and x = 5.

•

•

•
A

B

C

a

b

c

** Exercise 2

Use Figure 2 to obtain the area
and the perimeter of △ABC.
Suppose . . .

(a) . . . m∠A = 30◦, b = 7,
and c = 10.

(b) . . . a = 5, b = 6, and
c = 7.

(c) . . . m∠C = 105◦, a = 10,
and b = 15.

(d) . . . a = 40, b = 52, and
c = 90.

** Exercise 3

Consider Figure 2. What is
the area and the perimeter of
△ABC?

(a) Suppose a = 3, b = 5, and
c = 7.

(b) Let m∠A = 30◦, m∠B◦ =
55◦, and a = 11.

(c) Say m∠B = 45◦, m∠C =
100◦, and a = 60.

(d) Assume m∠C = 155◦, b =
5, and c = 10.

(e) Given that m∠A = 33◦,
b = 19, and c = 25.

** Exercise 4

Use Proposition 10.1 to prove
the Law of Sines.
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•
•

•
A

B

C

Figure 3

*** Exercise 5

In Figure 3, circles A, B, and C
have radii 3, 2, and 1, respec-
tively. Find the area of the gray
region. Hint: Form an oblique
triangle with the circles’ centers.

** Exercise 6

Consider a regular n-gon. Sup-
pose it has an apothem of length
a, a circumradius of length r,
and a side of length s. Calculate
its area and perimeter using the
information given.

(a) n = 6 and s = 10.

(b) n = 30 and a = 15.

(c) n = 8 and r = 15.

(d) n = 10 and a = 4.

(e) n = 12 and r = 5.

(f) n = 15 and s = 40.

** Exercise 7

Suppose the area of a regular
hexagon is 600

√
3. Find the

length of its

(a) apothem,

(b) circumradius, and

(c) side.

** Exercise 8

Assume the area of a regular oc-
tagon is 450

√
2. What is length

of its

(a) apothem,

(b) circumradius, and

(c) side?

*** Exercise 9

A circle of radius 10 circum-
scribes a regular n-gon. Use the
given values of n to compute the
area and the perimeter of the n-
gon.

(a) n = 3

(b) n = 4

(c) n = 5

(d) n = 6

(e) n = 8

(f) n = 12

** Exercise 10

In Exercise 9, what values are
the areas and perimeters of the
regular n-gons approaching as n
grows?
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*** Exercise 11

A circle of radius 10 inscribes
a regular n-gon. Calculate the
area and the perimeter of the
triangle, for n equal to each of
the following.

(a) n = 3

(b) n = 4

(c) n = 5

(d) n = 6

(e) n = 8

(f) n = 12

** Exercise 12

In Exercise 11, what values are
the areas and perimeters of the
regular n-gons approaching as n
grows?

x
r

A

•

•
•

θ

Figure 4

** Exercise 13

Consider Figure 4. In partic-
ular, consider the variables x,
r, and θ. Find the third of
the three variables using the
givens information about the
other two.

(a) r = 5 and θ = 120◦.

(b) r = 12 and x = 12
√
2.

(c) x = 17/2 and θ = 32◦.

(d) r = 16 and θ = 90◦.

(e) r = 100 and x = 25.

(f) x = 10 and θ = 100◦.

** Exercise 14

Suppose the variables A, r, and
θ are as shown in Figure 4. Use
the given values of the two vari-
ables to find the third variable.

(a) A = 8π and θ = 180◦.

(b) r = 9 and θ = 150◦.

(c) A = 0.352 and θ = 45◦.

(d) r = 20 and θ = 60◦.

(e) A = 100π − 200 and θ =
90◦.

(f) r = 19 and θ = 45◦.
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** Exercise 15

Consider Figure 4.

(a) Suppose r = 9 and x = 10.
Find A.

(b) Let A = 15 and θ = 30◦.
What is the value of x?

(c) Assume x = 5 and θ =
120◦. Calculate A.

• •D E

Figure 5

*** Exercise 16

In Figure 5, suppose circles D
and E have radii 5 and 3, re-
spectively. Find the gray area.

Figure 6

*** Exercise 17

Consider Figure 6. Assume the
outer square has a side length of
four. Calculate the ratio of the
gray area to white area within
the square.
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Chapter 11

Vectors

In this chapter, we will study vectors. Vectors are of tremendous
importance in mathematics, and they have many applications in
physics and engineering. Our study will be limited to vectors in
two dimensions, but it is not difficult to generalize many of the
ideas.

The assumed knowledge is minimal. We will be evaluating trigono-
metric functions, so the reader needs to have familiarity with Chap-
ter 5. Section 1.4.1 is needed for Section 11.3. One proof requires
the Law of Cosines, so Chapter 9 is necessary for a complete theo-
retical understanding. We will use scientific calculators extensively.

11.1 The Basics

Definition 11.1 A nonzero vector is a mathematical expression
that shows magnitude and direction.

Usually vectors are denoted by bold letters such as v or a letter
with an arrow over it such as v⃗.

Vectors of the same magnitude and direction are equiva-
lent. In other words, if u is obtained by shifting v, then
u = v. All the vectors to the right equivalent.
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To denote the vector with starting point A and ending

point B, we write
−→
AB. Usually, we refer to the starting

point as the “tail” and the ending point the “tip”.

•A
B

Since we can shift vectors without losing equality, we
can always assume that the tail of a vector is located
at the origin. This practice occurs so frequently that
we will introduce a definition to reference vectors whose
tails are assumed to be at the origin.

Definition 11.2 A position vector is the representation of a
vector which has its tail at the origin.

Position vectors allow us a means to reference vectors numerically.

Definition 11.3 Suppose v has a position vector whose tip is at
(a, b). Then the coordinate vector of v is(︃

a
b

)︃
.

x

y

a

b
v

Since shifts do not affect equivalence,

v =

(︃
a
b

)︃
.

We say that a and b are the “first component”
and “second component”, respectively. For type-
setting purposes, we will sometimes write (a, b)T

to indicate the coordinate vector of v. The T de-
notes “transpose”; the transpose switches rows to
columns and vice versa.

In general, if A = (a1, a2) and B = (b1, b2), then

−→
AB=

(︃
b1 − a1
b2 − a2

)︃
.

Example 11.1 Find the coordinate vectors of (a)
−→
PQ and (b)

−→
QP ,

if P = (−2, 5) and Q = (−7, 3).
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Solution

(a) The coordinate vector of
−→
PQ is(︃

−7− (−2)
3− 5

)︃
=

(︃
−5
−2

)︃
.

(b) The coordinate vector of
−→
QP is(︃

−2− (−7)
5− 3

)︃
=

(︃
5
2

)︃
.

■

Example 11.2 Find the angle that the position vector of

u =

(︃
2
3

)︃
makes with the positive x-axis.

Solution The first step is to draw the position vector of u.

x

y

1

2

3

1 2

3

θ

Then tan θ = 3/2 implies θ = arctan(3/2) ≈ 56.310◦. ■

Definition 11.4 The magnitude of a vector v = (a, b)T is defined
to be its length. To indicate the magnitude of a vector v we write
|v|.

Proposition 11.1 The magnitude of v = (a, b)T is

|v| =
√︁
a2 + b2.
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x

y

|a|

|b|

|v| =
√
a2 + b2

The proof of this follows via an application of the Pythagorean
Theorem. For v = (a, b)T , the diagram above indicates the idea.

Example 11.3 Find |u|, when

u =

(︃
3
4

)︃
.

Solution Proposition 11.1 tells us

|u| =
√︁
32 + 42 = 5.

■

Definition 11.5 The zero vector, denoted by 0, is the vector
with no magnitude or direction.

In component form,

0 =

(︃
0
0

)︃
.

When graphed as a position vector, the zero vector is a point at
the origin.

11.1.1 Arithmetic of Vectors

Suppose we have vectors u and v, and we want to find their sum.
There are two methods to do this pictorially.
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Parallelogram method: Draw vectors u and v with their
tails at the origin. Then draw a parallelogram with u
and v as sides. The diagonal of the parallelogram is
u+ v.

v

u

u+ v•

Triangle method: Draw vector u with its tail at the
origin. Draw v with its tail at the tip of u. The vector
that goes from the tail of u to the tip of v is u+ v.

vu

u+ v
•

Another way to find the sum of two vectors is via coordinate vec-
tors. Suppose u = (u1, u2)

T
and v = (v1, v2)

T
. Then

u+ v =

(︃
u1 + v1
u2 + v2

)︃
.

Example 11.4 Assume

u =

(︃
−1
2

)︃
and v =

(︃
3
1

)︃
.

(a) Use the graphs of u and v to find u+ v.

(b) Use the coordinate vectors of u and v to find the coordinate
vector of u+ v.

Solution
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(a) We will use the parallelogram method.

x

y

−1 1 2 3

1

2

3

u
v•

u+ v

(b) Using coordinate vectors, we have

u+ v =

(︃
−1
2

)︃
+

(︃
3
1

)︃
=

(︃
−1 + 3
2 + 1

)︃
=

(︃
2
3

)︃
.

■

Definition 11.6 Within the context of vectors, real numbers are
called scalars.

Definition 11.7 Suppose c is a scalar, and v = (a, b)T . Then
define

cv =

(︃
ca
cb

)︃
.

Example 11.5 Let

v =

(︃
3
3/2

)︃
.

Graph the position vectors of v, −2v, and 1
2v using the same set

of axes.
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Solution

x

y

−6 −4 −2 2

−2

2
v

−2v

1
2v

•

■

Definition 11.8 We say the vectors u and v are parallel if there
exists a nonzero scalar c such that

cu = v.

Notice this definition implies that vectors going in opposite direc-
tions are parallel. For example, the vectors (1, 2)T and (−1,−2)T

are parallel, because

−1

(︃
1
2

)︃
=

(︃
−1
−2

)︃
.

Proposition 11.2 The following hold for all vectors u, v, and w
and all scalars c and d.

(i) u+ (v +w) = (u+ v) +w (v) c(du) = (cd)u
(ii) u+ v = v + u (vi) 1u = u
(iii) u+ 0 = 0+ u = u (vii) c(u+ v) = cu+ cv
(iv) u+ (−u) = −u+ u = 0 (iix) (c+ d)u = cu+ du

Proof We will provide the proofs of (i) and (ii) and leave the others
as exercises. Let

u =

(︃
u1

u2

)︃
, v =

(︃
v1
v2

)︃
, and w =

(︃
w1

w2

)︃
.
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(i)

u+ (v +w) = (u1, u2)
T
+
(︂
(v1, v2)

T
+ (w1, w2)

T
)︂

= (u1, u2)
T
+ (v1 + w1, v2 + w2)

T

=
(︂
u1 + (v1 + w1), u2 + (v2 + w2)

)︂T
=
(︂
(u1 + v1) + w1, (u2 + v2) + w2

)︂T
= (u1 + v1, u2 + v2)

T
+ (w1, w2)

T

=
(︂
(u1, u2)

T
+ (v1, v2)

T
)︂
+ (w1, w2)

T

= (u+ v) +w.

(ii)

u+ v = (u1, u2)
T
+ (v1, v2)

T

= (u1 + v1, u2 + v2)
T

= (v1 + u1, v2 + u2)
T

= (v1, v2)
T
+ (u1, u2)

T

= v + u.

■

To simplify our notation a bit. Let us introduce a convention.

For all vectors u and v, assume

u− v = u+ (−v) .

This is analogous to the convention that x− y means x+ (−y) for
real numbers x and y.

Example 11.6 Suppose u = (−8, 2)T and v = (−3,−4)T . Com-
pute

3

2
u− 3(−v + 0).
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Solution

3

2
u− 3(−v + 0) =

3

2
u− 3(−v)

=
3

2
u+ 3v

=
3

2
(−8, 2)T + 3(−3,−4)T

=

(︃
3

2
(−8),

3

2
(2)

)︃T

+ (3(−3), 3(−4))T

= (−12, 3)
T
+ (−9,−12)T

= (−21,−9)T .

■

Definition 11.9 A unit vector is a vector of magnitude is 1.

Example 11.7 Verify that (−3/5,−4/5)T is a unit vector.

Solution To verify that something is a unit vector, we will prove
it has magnitude 1.⃓⃓⃓

(−3/5,−4/5)T
⃓⃓⃓
=
√︁

(−3/5)2 + (−4/5)2

=
√︁

9/25 + 16/25

=
√︁
25/25

=
√
1

= 1.

■

Proposition 11.3 Consider vector v and scalar c. Then

|cv| = |c| |v| .
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Proof Suppose v = (v1, v2)
T
. Then

|cv| =
⃓⃓⃓
(cv1, cv2)

T
⃓⃓⃓

=
√︁
(cv1)2 + (cv2)2

=
√︂

c2v21 + c2v22

=
√︂
c2(v21 + v22)

=
√
c2
√︂
v21 + v22

= |c| |v| .

■

Proposition 11.4 The unit vector in the direction of v ̸= 0 is

1

|v|
v.

Proof Proposition 11.3 tells us⃓⃓⃓ 1
|v|

v
⃓⃓⃓
=
⃓⃓⃓ 1
|v|

⃓⃓⃓
|v|.

Since 1/|v| > 0, ⃓⃓⃓ 1
|v|

⃓⃓⃓
|v| = 1

|v|
|v| = 1.

■

Example 11.8 Find the unit vector in the direction of

w =

(︃
−5
12

)︃
.

Solution The magnitude

|w| =
√︁

(−5)2 + 122 = 13.

So, the unit vector in the direction of w is

1

13
w =

(︃
−5/13
12/13

)︃
.
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■

Let us introduce two popular unit vectors. We will use them as an
alternative way to express vectors numerically.

Definition 11.10

i =

(︃
1
0

)︃
and j =

(︃
0
1

)︃
.

Definition 11.11 Suppose v = (a, b)T . Then the component
form of v is

ai+ bj.

Example 11.9

(a) Write (−4, 7)T in component form.

(b) Find the coordinate vector of −3i+ 5j.

Solution

(a) The component form of (−4, 7)T is

−4i+ 7j.

(b) The coordinate vector of −3i+ 5j is(︃
−3
5

)︃
.

■
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11.2 Bearing

Bearing refers to the degrees east or west of north or south. For
example, N30◦W means 30◦ west of north.

EW

N

S

30◦

N30◦W

The bearing S25◦E means 25◦ east of south.

EW

N

S25◦

S25◦E

Example 11.10 Suppose v has bearing N60◦E and |v| = 20. Find
the coordinate vector of v, when the x- and y-axes are directed east
and north, respectively.

x

y
v

2060◦

Solution Using basic trigonometry, we
conclude x- and y-coordinates of v are

20 sin 60◦ = 10
√
3 and 20 cos 60◦ = 10,

respectively. Hence,

v =

(︃
10
√
3

10

)︃
.

■

Example 11.11 A sailboat leaves Katsuura, Japan. It maintains
a constant speed of 40 km/h. The sailboat’s bearing is S70◦E for
the first two hours. It then changes course and continues sailing
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at a bearing of N30◦E for three hours. Find the bearing of the
straight path from the sail boat’s starting to ending location.

Solution The distance the sailboat travels in the first two hours is
40(2) = 80 kilometers, and it travels 40(3) = 120 kilometers during
the following three hours.

Suppose u is vector whose tail is the sailboat’s original position
and whose tip is its position after two hours. Let v be the vector
whose tail is the position of the boat immediately after the first
two hours and whose tip is the position of the boat three hours
later.

EW

N

S

θ

u70◦

v
30◦

u+ v

•

We have

u =

(︃
80 sin 70◦

−80 cos 70◦

)︃
≈
(︃

75.175
−27.362

)︃
,

and

v =

(︃
120 sin 30◦

120 cos 30◦

)︃
≈
(︃

60
103.923

)︃
.

EW

N

S

135.175

76.561 θ

The vector which represents a straight
path between the initial and final position
is

u+ v ≈
(︃

75.175
−27.362

)︃
+

(︃
60

103.923

)︃
=

(︃
135.175
76.561

)︃
.
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Let θ be the angle the resulting position vector makes with north.
Then

θ ≈ arctan

(︃
135.175

76.561

)︃
≈ 60.473◦.

Therefore, the bearing of the straight path from the boat’s starting
to ending position is about N60.473◦E. ■

Example 11.12 A pilot sets her plane’s instruments so that it will
head S20◦E at a speed of 550 mph in still air. However, there is a
15 mph East Wind. Compute the speed and bearing of the plane
in the wind. (An East Wind blows from east to west.)

Solution Let w be the wind’s vector, and a be the airplane’s.
Consider our diagram which is not to scale.

EW

N

S

a

w

a+w

•
We see

w =

(︃
−15
0

)︃
,

and

a =

(︃
550 sin 20◦

−550 cos 20◦

)︃
≈
(︃

188.111
−516.831

)︃
.

Hence, the resulting vector is

a+w ≈
(︃

188.111− 15
−516.831

)︃
=

(︃
173.111
−516.831

)︃
.

It follows that the speed of the plane in the wind is

|a+w| =
√︁
(173.111)2 + (−516.831)2 ≈ 545.052 mph.

To find the bearing, we note that the vector a+w makes a coun-
terclockwise angle measure of

arctan

(︃
173.111

516.831

)︃
≈ 18.518◦

with south. Hence, the bearing is about S18.518◦E ■
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11.3 Force

Newton’s Laws of Mechanics give us the fundamental framework
to understand force.

Newton’s Laws of Mechanics

(i) Every object remains at rest or moves at a constant velocity
unless an external force acts upon the object. In other words,
if there is no external force acting upon an object, then the
magnitude of acceleration is 0.

(ii) If forces F 1, F 2, . . . , F n act on an object of constant mass
m, then their sum is

F 1 + F 2 + . . .+ F n = ma,

where a is the object’s acceleration vector.

(iii) The forces that two interacting objects exert on each other
are equal in magnitude and opposite in direction. In other
words, if object A exerts a force of F on object B, then object
B exerts a force of −F on object A.

There are an innumerable number of forces in nature. However,
our studies will be restricted to the three below and forces from
unnamed sources.

Definition 11.12

• Gravitational force is the force exerted by gravity. Denote
it by G. Occasionally, we use subscripts to indicate different
gravitational forces.

• Normal force is the force perpendicular to a surface. We
denote it by N . We sometimes need a subscript when there
are multiple normal forces.

• Tension is the force exerted by a cable. Tension travels along
the cable and is obtained via the tightness of the cable. The
vector T will represent tension in our calculations. When
more than one cable exerts force or the same cable exerts
force on different objects, we use subscripts to denote the
various tensions.
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The table below shows the most common units of measure in the
metric and Old English system.

System Force Mass Acceleration

Metric newton (N) kilogram (kg) meters per square
second (m/s2)

Old English pound (lb) slug feet per square
second (ft/s2)

As is customary in most science publications, we will use the metric
system exclusively.

Within this text, we will assume that objects are close to the surface
of the Earth. With this assumption in mind, let us introduce the
following convention.

Unless otherwise stated, approximate the magnitude of
gravitational g acceleration as 9.81 m/s2.

For an object of mass m, the gravitational force has magnitude
mg. Calculating the direction of gravitational force will rely on
the context of the problem.

Example 11.13 A box of mass 20 kilograms rests on a surface.
Calculate the component form of the normal force. Assume that
one Newton of force right is i, and one Newton of force up is j.

N

G

•

Solution Gravitational force is

G = 20(−gj) ≈ 20(−9.81j) = −196.2j.

Since the box is at rest, net force is 0. So,

N +G = 0 implies N = −G = 196.2j.

■

Example 13 illustrates Newton’s Laws of Mechan-
ics (iii). Gravitational force acts on the ground,
and the ground exerts a force of equal magnitude in the opposite
direction.
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Example 11.14 A box of mass 50 kilograms hangs from a cable.
Calculate the magnitude of tension.

T

G

•

•
Solution Say that gravitational force goes in the
direct (0,−1)T . Then

G = 50

(︃
0
−g

)︃
≈
(︃

0
−490.5

)︃
.

Since the box is at rest,

T +G = 0 implies T = −G =

(︃
0

490.5

)︃
.

It follows that the magnitude of T is about 491 newtons. ■

In Examples 13 and 14, we drew all of the forces with their tails at
a single point. Since vectors are equal when their magnitude and
direction are the same, we can place them at any location. What
matters is an understanding of what object the forces are acting
on.

• •

•

•

••

•
•

A B

C

D

E

F

G
H

The next few examples will involve inclined planes. As a result,
many problems require diagrams like the one above.

Suppose BC is parallel to DF . Then it is helpful to note that

∠A ∼= ∠EDF ∼= ∠GDH.

Subsection 1.4.1 discusses the reasoning behind this claim.

Let us introduce a convention before we begin our inclined plane
examples:

Assume that all inclined planes are frictionless surfaces,
and there is no air resistance.
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30◦

Example 11.15 A box slides down a plane inclined at an angle of
30◦ from horizontal. Suppose the mass of the box is 10 kilograms.
Calculate the magnitude of the box’s acceleration.

Solution Let us examine our forces. Gravitational force G acts on
the box vertically. Because the magnitude of gravitational force is
mass times acceleration,

|G| = 10g.

Normal force N acts on the box and counteracts the portion of
gravitational force perpendicular to the box.

G

N

10a
•

5g
√
3

5g

30◦
30◦

Newton’s Laws of Mechanics (ii) tells us

G+N = ma,

where a is the acceleration of the box and m = 10 kilograms is its
mass.

Suppose ma goes in the direction of (−1, 0)T and N goes in the
direction of (0, 1)T . Then

ma =

(︃
−10|a|

0

)︃
and G =

(︃
−5g

−5g
√
3

)︃
.
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Because normal force N counteracts the portion of gravitational
force G perpendicular to the ramp,

N =

(︃
0

5g
√
3

)︃
.

It follows that

G+N = 10a implies

(︃
−5g
0

)︃
=

(︃
−10|a|

0

)︃
.

This leads us to conclude −5g = −10|a|. This gives

|a| = g/2 ≈ 4.91 m/s
2
.

Hence, the box accelerates down the inclined plane at an accelera-
tion of about 4.91 meters per square second. ■

θ

Example 11.16 A box of mass m slides down a plane inclined
at an angle of θ from horizontal. If the box accelerates down the
incline at 5.95 meters per square second, find θ.

Solution Consider our forces. Gravitation force G of magnitude
mg acts on the box vertically. The portion of gravitational force
perpendicular to the surface is equal in magnitude and opposite in
direction to normal force N .

ma

N

G

•

mg sin θ

mg cos θ
θ

θ
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Suppose a goes in the direction of (1, 0)T , and N goes in the di-
rection of (0, 1)T . Because |a| = 5.95,

ma =

(︃
5.95m

0

)︃
.

Using right triangle trigonometry, we have

G =

(︃
mg sin θ
−mg cos θ

)︃
.

Newton’s Laws of Mechanics (ii) tells us

G+N = ma.

Since normal force N cancels with the second component of G, it
follows that (︃

mg sin θ
0

)︃
=

(︃
5.95m

0

)︃
.

This implies 5.95m = mg sin θ. Using a bit of algebra, we see that
sin θ = 5.95/g. The angle θ is within the range of arc sine. Ergo,

θ = arcsin
5.95

g
≈ 37.3◦.

■

Our next example examines a problem involving a cable. Before
we begin, we will introduce another convention:

Assume cables have no mass.

•

•
•
60◦

45◦
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Example 11.17 Suppose the mass of the box is 10 kilograms.
Calculate the magnitude of tension in each rope.

Solution Let us take account of our forces. Gravitational force G
of magnitude 10g acts on the box vertically. Tension vectors are
parallel to their corresponding ropes and pull away from the box;
call the tension in the left rope T 1 and the tension in the right rope
T 2.

•

•
•
60◦

45◦

T 1

|T 1|
√
3

2

|T 1|
2

T 2
|T 2|√

2

|T 2|√
2

G

We need to define our coordinate system. Let G be parallel (0, 1)T

and go in the opposite direction. Then

G =

(︃
0

−10g

)︃
≈
(︃

0
−98.1

)︃
.

Suppose (1, 0)T goes right and is perpendicular to G. Then special
right triangles tell us

T 1 =

(︃
−|T 1|

√
3/2

|T 1|/2

)︃
≈
(︃

−0.866|T1|
0.5|T1|

)︃
and

T 2 =

(︃
|T 2|/

√
2

|T 2|/
√
2

)︃
≈
(︃

0.707|T 2|
0.707|T 2|

)︃
.

The box is at rest, which means the sum of forces is equal to 0.
So, we have

T 1 + T 2 +G = 0 implies

(︃
−0.866|T 1|+ 0.707|T 2|

0.5|T 1|+ 0.707|T 2| − 98.1

)︃
≈ 0.
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It follows that

−0.866|T 1|+ 0.707|T 2| ≈ 0 and 0.5|T 1|+ 0.707|T 2| − 98.1 ≈ 0.

Solving the first equation for |T 2| yields |T 2| ≈ 1.225|T 1|. Substi-
tuting the right side of this equation for |T 2| into our other equation
gives

0.5|T 1|+ 0.866|T 1| − 98.1 ≈ 0
⇒ 1.366|T 1| ≈ 98.1
⇒ |T 1| ≈ 71.816.

It follows that

|T 2| ≈ 1.225(71.816) ≈ 87.974.

We conclude

|T 1| ≈ 71.8 N and |T 2| ≈ 88.0 N.

■

In our last example of this section, we will examine an inclined
plane problem which contains a pulley and a cable. To simplify
this type of problem, we will introduce yet another convention:

Assume pulleys are frictionless, which means that ten-
sion from cables are not reduced by the pulleys.

2

•

1

20◦

Example 11.18 Consider the diagram above. If the mass of box
1 is 7 kilograms, and the system is at rest, calculate the mass of
box 2.

Solution Let us examine our forces. The forces acting on box 1
are gravitational force G1, normal force N , and tension T 1. The
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forces acting on box 2 are gravitational force G2 and tension T 2.

G2

T 2•

•

20◦

G1

N

T 1
•

7g cos 20◦

7g sin 20◦

20◦

The system is at rest, which means the forces acting on each box
add to 0. So,

G1 +N + T 1 = 0 and G2 + T 2 = 0.

Let us put the forces acting on box 1 into coordinate form and make
some calculations. Suppose T 1 goes in the direction of (1, 0)T and
N goes in the direction of (0, 1)T . Since |G1| = 7g, right triangle
trigonometry tells us

G1 =

(︃
−7g sin 20◦

−7g cos 20◦

)︃
.

Because T 1 is exclusively in the first component, N is exclusively
in the second component, and G1 +N + T 1 = 0,

N =

(︃
0

7g cos 20◦

)︃
and T 1 =

(︃
7g sin 20◦

0

)︃
.

It follows that |T1| = 7g sin 20◦.

Now we will put the forces acting on box 2 into coordinate form and
do a few more calculations to finish the example. For convenience,
we will switch coordinate systems. Suppose T 2 goes in the direction
(0, 1)T , and (1, 0)T is a vector perpendicular which goes either left
or right (we will not use this coordinate in our calculations so it
does not matter). Then

G2 =

(︃
0

−mg

)︃
,
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where m is the mass of box 2.

Newton’s Laws of Mechanics (iii) tells us that

|T 1| = |T 2| .

It follows that |T 2| = 7g sin 20◦. Therefore,

T 2 =

(︃
0

7g sin 20◦

)︃
.

We have

G2 + T 2 = 0 implies

(︃
0

−mg + 7g sin 20◦

)︃
= 0.

So, mg = 7g sin 20◦. Dividing by g yields

m = 7 sin 20◦ ≈ 2.39 kg.

We conclude the mass of box 2 is about 2.39 kilograms. ■

11.4 The Dot Product

Definition 11.13 Suppose u = (u1, u2)
T and v = (v1, v2)

T . The
dot product of u and v is

u • v = u1v1 + u2v2.

Notice that the result of the dot product of two vectors is a scalar,
not a vector.

Example 11.19 Suppose

u =

(︃
−1/2
π

)︃
, v =

(︃
4
5

)︃
, and w = −3i+ 2j.

Compute (a) u • v, (b) v • w, and (c) u • (v +w).

Solution

330



(a) Using the definition,

u • v = −1

2
(4) + π(5) = 5π − 2.

(b) We know

w = −3i+ 2j =

(︃
−3
2

)︃
.

This implies

v • w = 4(−3) + 5(2) = −2.

(b) Parentheses tell us to do the operations contained within
them first. So,

u • (v +w) =

(︃
−1

2
, π

)︃T

•

(︂
(4, 5)T + (−3, 2)T

)︂
=

(︃
−1

2
, π

)︃T

• (1, 7)T

=

(︃
−1

2

)︃
(1) + π(7)

=
14π − 1

2
.

■

Proposition 11.5 (Dot Product Properties) Suppose u, v, and
w are vectors, and suppose c is a scalar.

(i) u • v = v • u

(ii) u • (v +w) = u • v + u • w

(iii) u •(cv) = c(u •v) = (cu) •v

(iv) 0 • u = u • 0 = 0

Proof We will prove (i) and (ii), and leave the rest as exercises.
Let

u =

(︃
u1

u2

)︃
, v =

(︃
v1
v2

)︃
, and w =

(︃
w1

w2

)︃
.
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(i) Then

u • v = u1v1 + u2v2

= v1u1 + v2u2

= v • u.

(ii) Let us compute both sides of

u • (v +w)
?
= u • v + u • w

and prove they are equal.

u • (v +w) = (u1, u2)
T •

(︂
(v1, v2)

T + (w1, w2)
T
)︂

= (u1, u2)
T • (v1 + w1, v2 + w2)

T

= u1(v1 + w1) + u2(v2 + w2)

= u1v1 + u1w1 + u2v2 + u2w2.

u • v + u • w = (u1, u2)
T • (v1, v2)

T + (u1, u2)
T • (w1, w2)

T

= u1v1 + u2v2 + u1w1 + u2w2

= u1v1 + u1w1 + u2v2 + u2w2.

Ergo,
u • (v +w) = u • v + u • w.

■

Proposition 11.6 For all vectors u,

u • u = |u|2 .

Proof Suppose u = (u1, u2)
T . Then

u • u = u1u1 + u2u2

= u2
1 + u2

2

=

(︃√︂
u2
1 + u2

2

)︃2

= |u|2 .
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■

Theorem 11.1 Suppose u and v are vectors. Let θ be the angle
between u and v of smaller measure. Then

u • v = |u||v| cos θ.

Proof Let us place u and v at the origin. The vector that starts
at the tip of u and goes to the tip of v is v−u. Using these three
vectors we can form a triangle.

u

v

θ•
v − u

The Law of Cosines (Theorem 9.1) tells us

|v − u|2 = |u|2 + |v|2 − 2|u||v| cos θ.

Using Proposition 11.6,

|v − u|2 = (v − u) • (v − u)

= (v − u) • v − (v − u) • u

= |v|2 − u • v − v • u+ |u|2

= |v|2 − 2u • v + |u|2

So,

|v|2 − 2u • v + |u|2 = |u|2 + |v|2 − 2|u||v| cos θ
⇒ −2u • v = −2|u||v| cos θ
⇒ u • v = |u||v| cos θ.

■
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Example 11.20 Suppose the angle between u and v is 30◦. If
|u| = 5 and |v| = 7, find u • v.

Solution Because of Theorem 11.1,

u • v = |u||v| cos 30◦

= 5(7)

(︄√
3

2

)︄

=
35
√
3

2
.

■

In Theorem 11.1, the assumption that θ is the angle between u and
v of smaller measure, leads us to the statement 0 ≤ θ ≤ 180◦. This
is helpful, because it allows us to use arc cosine without careful
consideration of the measure of θ.

Example 11.21 Find the angle between r = −3i + 2j and s =
5i− j.

Solution Theorem 11.1 tells us that

r • s = |r||s| cos θ.

Let us find the pieces and then solve for θ:

r • s = −3(5) + 2(−1), |r| =
√︁
(−3)2 + 22, and |s| =

√︁
52 + (−1)2

= −15− 2 =
√
9 + 4 =

√
25 + 1

= −17 =
√
13 =

√
26.

It follows that

−17 =
√
13 ·

√
26 cos θ implies cos θ = − 17

13
√
2
.

Hence,

θ = arccos

(︃
− 17

13
√
2

)︃
≈ 157.620◦.

■
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Definition 11.14 The vectors u and v are orthogonal if

u • v = 0.

Since
u • v = |u||v| cos θ,

there are two ways for vectors to be orthogonal. The angle between
the two vectors, θ, could equal 90◦ or at least one of the vectors
could be 0.

Example 11.22 Find a unit vector orthogonal to

a =

(︃
−1
5

)︃
.

Solution Suppose the vector b is a unit vector. Then

b =

(︃
cosα
sinα

)︃
.

for some angle α. If b is orthogonal to a, then

a • b = − cosα+ 5 sinα = 0.

This implies
5 sinα = cosα

⇒ 5 tanα = 1

⇒ tanα =
1

5

⇒ α = arctan

(︃
1

5

)︃
≈ 11.310◦.

Thus,

b ≈
(︃

cos 11.310◦

sin 11.310◦

)︃
≈
(︃

0.981
0.196

)︃
.

■

In Exercise 22, we simply found one vector. There is another solu-
tion. In particular, (︃

−0.981
−0.196

)︃
,
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which corresponds to α = arctan(1/5) + 180◦ ≈ 191.310◦. Within
the xy-plane, there are always two vectors orthogonal to a nonzero
vector.

11.5 Projection

Perhaps the easiest way to understand the concept of projection is
via examination of a few diagrams.

v

u
w•

The vector w is the “projec-
tion” of v onto u, and |w| is the
“scalar projection” of v onto u.
We write

projuv and compuv,

to denote the vector projection
and scalar projection, respec-
tively.

v

u
w •

Sometimes the vector projection
of v onto u does not lie on
u. This happens when the an-
gle between v and u is obtuse.
However, the projection of v
onto u always lies on the line
which contains the vector u.

v

u•
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It is possible for the vector pro-
jection of v onto u to be 0; this
corresponds to the scalar projec-
tion being 0. The vector project
is 0 if and only if u is orthogonal

to v. Using our notation,

projuv = 0 and compuv = 0,

if and only if u • v = 0.

Proposition 11.7 Suppose u ̸= 0. Then

projuv =
u • v

|u|2
u and compuv =

u • v

|u|
.

Proof We will prove

compuv =
u • v

|u|
.

Let θ be the angle between u and v. Suppose that u and v are
position vectors on the xy-plane such that u lies on the positive
x-axis. Notice that compuv is the x-coordinate of the tip of v.
Since v has length |v|, Theorem 5.1 tells us compuv = |v| cos θ.

To get rid of the cos θ in the equation compuv = |v| cos θ, notice

u • v = |u||v| cos θ implies cos θ =
u • v

|u||v|
.

Hence,

compuv = |v| cos θ

= |v|
(︃

u • v

|u||v|

)︃
=

u • v

|u|
.

Now, we want to find projuv. The magnitude of the vector projec-
tion is

compuv =
u • v

|u|
,

and it goes in the direction of u. The unit vector u/|u| goes in the
direction of u, so scaling it by u •v/|u| gives the vector projection.
Therefore,

projuv =

(︃
u • v

|u|

)︃
u

|u|
=

u • v

|u|2
u.
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■

Example 11.23 Suppose c = −3i+ 2j and d = i− 5j. Compute
(a) compdc and (b) projdc.

Solution

(a) Using Proposition 11.7,

compdc =
d • c

|d|

=
1(−3)− 5(2)√︁
12 + (−5)2

= − 13√
26

= − 13√
26

·
√
26√
26

= −
√
26

2
.

(b) We could scale the unit vector d/|d| by −
√
26/2 to find

projdc. However, let us use the formula in Proposition 11.7:

projdc =
d • c

|d|2
d

=
1(−3)− 5(2)

12 + (−5)2
(1,−5)T

= −13

26
(1,−5)T

= −1

2
(1,−5)T

=

(︃
−1

2
,
5

2

)︃T

.

■
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11.6 Work

Definition 11.15 The work done by a force F which moves an
object from point P to point Q is

W = F •
−→
PQ .

The vector
−→
PQ is referred to as the “displacement vector”.

The standard measure of work in the metric system is Joules, which
is abbreviated J.

1 J = N·m = kg·m2/s2.

In the Old English system, the unit pound-feet is used. We will
use the metric system whenever units are utilized. However, some
problems formulate work as a purely abstract phenomenon. In such
cases, units are omitted.

Example 11.24 The force vector F = 4i − 2j moves an object
from the origin to the point (5,−3). Find the work done.

Solution Since the displacement vector is

(5− 0)i+ (−3− 0)j = 5i− 3j,

the work done must be

W = F • (5i− 3j) = 4(5)− 2(−3) = 26.

■

F

θ
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Example 11.25 A force F of magnitude 10 Newtons is exerted
on a box at an angle θ from horizontal. The box moves 7 meters
right. Calculate the work done when (a) θ = 0, (b) θ = 60◦, (c)
θ = 90◦, and (d) θ = 120◦.

Solution Since |
→
PQ | = 7 and |F | = 10,

W = F •
→
PQ= |F |

⃓⃓⃓⃓
→
PQ

⃓⃓⃓⃓
cos θ = 70 cos θ.

(a) If θ = 0, then W = 70 cos 0 = 70 J.

(b) If θ = 60◦, then W = 70 cos 60◦ = 35 J.

(c) If θ = 90◦, then W = 70 cos 90◦ = 0.

(d) If θ = 120◦, then W = 70 cos 120◦ = −35 J. ■

Parts (c) and (d) illustrate how the definition of work differs from
the colloquial conception of “work”. In part (c), force was exerted
on the box, but no work was done because it was not in the direction
of motion. In part (d), we see that the concept of negative work, in
fact, makes sense given our definition; because the non-orthogonal
component of force was applied counter to the direction of motion,
a negative amount of work was done.

F

30◦

Example 11.26 Consider Example 15. How much work is required
to pull the box 3 meters up the incline?

Solution From our calculations in Example 15, we found that the
the gravitational force vector acting on the box is

G =

(︃
−5g

−5g
√
3

)︃
,
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where (1, 0)T is parallel to the incline and points up, and (0, 1)T

is perpendicular to the incline and points up. It follows that the
force requires to pull the box up at a constant velocity is

F =

(︃
5g
0

)︃
.

The displacement vector is (3, 0)
T
. Hence,

W =

(︃
5g
0

)︃
•

(︃
3
0

)︃
= 5g(3) + 0

= 15g

≈ 147 J.

Therefore, about 147 Joules of work are required to move the box
3 meters up the inclined plane. ■
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11.7 Exercises

* Exercise 1

Find the coordinate vector of−→
AB.

(a) A = (1, 2) and B = (7, 2).

(b) A = (3, 5) and B =
(−1, 7).

(c) A = (−2, 1) and B =
(−2,−7).

(d) A = (3,−5) and B =
(−7,−15).

* Exercise 2

Suppose v lies on the terminal
side of a standard position an-
gle θ. Find the degree measure
of θ. Assume 0 ≤ θ < 360◦.

(a) v =

(︄√
3

2
,
1

2

)︄T

(b) v = 3i− 1j

(c) v =

(︄
−1

2
,

√
3

2

)︄T

(d) v = −3j

(e) v = (−7,−7)
T

(f) v = i

(g) v = (−5,−2)T

(h) v = i− j

** Exercise 3

Compute the magnitude of each
vector.

(a) −3i+ 4j

(b) (3, 6)
T

(c) −12i+ 5j

(d)
2√
13

i− 3√
13

j

(e) (−17,−51)
T

(f)
11

61
i+

60

61
j

** Exercise 4

Suppose u lies on the terminal
side of a standard position angle
θ. Find the coordinate vector of
u for the given values of |u| and
θ.

(a) |u| = 22 and θ = 0◦

(b) |u| = 1 and θ = −π/4

(c) |u| = 2.1 and θ = 270◦

(d) |u| = 11/5 and θ = 2π/3

(e) |u| = 2
√
5 and θ = 30◦

(f) |u| = 10
√
π and θ = 7π/6
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* Exercise 5

For each pair of vectors u and
v, use the parallelogram or tri-
angle method to draw u + v on
the xy-plane.

(a) u = (−3, 2)
T

and v =

(1,−1)
T

(b) u = i−2j and v = −i−4j

(c) u = (−2,−5)
T

and v =

(2, 5)
T
.

* Exercise 6

Use the given pairs of coordinate
vectors of u and v in Exercise 5
to find the coordinate vectors of
u+ v.

x

y
u v

•

Figure 1

* Exercise 7

Consider Figure 1. Sketch each
of the following.

(a) 2u

(b) − 1
2v

(c) u+ v

(d) 2u+ v

* Exercise 8

For each vector v, draw v, −2v,
3v on the xy-plane.

(a) v = (−1, 3)
T

(b) v = i+ j

(c) v = (−3,−2)
T

* Exercise 9

Use the given coordinate vectors
of v in Exercise 8 to find the co-
ordinate vectors of −2v and 3v.

* Exercise 10

Use the given values of u, v, and
w to compute
(i) u+ v,
(ii) −5v, and
(iii) 3u− 3 (v − 2w).

(a) u = −15i−2j, v = − 3
5i+

3j, and w = −4i+ 13j.

(b) u = 2i + 4j, v = 3i + 3j,
and w = 1

2i.

(c) u = 15i − 5j, v = −2j,
and w = 1

10i− 14j.

• •

••

A B

CD

Figure 2
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** Exercise 11

Consider Figure 2. Let u =
−→
AB

and v =
−→
AD. Write the vec-

tors listed using the coordinates
in the diagram. Remember
that vectors are invariant under
shifts.

(a) −u

(b) u+ v

(c) u− v

(d) v − u

** Exercise 12

Prove (iii)-(iix) of Proposition
11.2.

** Exercise 13

Find the unit vector in the di-
rection of each vector.

(a) (−5,−12)
T

(b) 7i+ j

(c) (40,−9)
T

(d)
3

7
i− 4

7
j

(e)
(︁
3
√
23, 6

)︁T
(f) −5

3
i+

5

3
j

** Exercise 14

Compute the vector u which has
the given magnitude and the
same direction as v.

(a) |u| = 5 and v =(︁
−
√
3, 1
)︁T

(b) |u| = 1

2
and v =

6

5
i− 8

5
j

(c) |u| = 13 and v =(︃
−6,−5

2

)︃T

(d) |u| =
√
2 and v = −

√
3i−√

3j

(e) |u| = 15 and v = (3, 4)
T

** Exercise 15

Calculate the coordinate vec-
tor of v with the given bearing
and magnitude. Suppose the x-
and y-axes are directed east and
north, respectively.

(a) N30◦E and |v| = 20

(b) N45◦W and |v| = 6
√
2

(c) S30◦W and |v| = 100

(d) S60◦E and |v| = 5
√
3

** Exercise 16

Find the bearing of each vector.
Assume the x- and y-axes are
directed east and north, respec-
tively.

(a) 15i−15j

(b)
(︁
−
√
3, 1
)︁T

(c) −8i− 8j

(d)
(︁
25, 25

√
3
)︁T

(e) 7i− 11j

(f)
(︁√

2,
√
3
)︁T

** Exercise 17

Point B is 100 meters due east
of point A. Point C is 150 me-
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ters due north of B. Point D is
70 meters due west of point C.

(a) Calculate the bearing from
A to C.

(b) What is the bearing from
A to D?

(c) Find the bearing from B
to D.

(d) Compute the bearing from
C to A.

(e) Calculate the bearing from
D to A.

(f) What is the bearing from
D to B?

** Exercise 18

Ship A travels at a bearing of
S70◦W and a rate of 25 kilome-
ters per hour. Ship B travels at
a bearing ofN30◦E and a rate of
20 kilometers per hour. Suppose
that the ships were initially at
the same location. Calculate the
distance and bearing from ship
A to ship B after one hour.

** Exercise 19

An airplane travels along a path
with a bearing of N25◦E for two
hours. It changes course and
heads S80◦E and lands an hour
later. Suppose the plane flies at
a constant speed. Find the bear-
ing of a plane traveling at the
same speed which takes-off and

lands at the same locations, but
travels along a straight path.

** Exercise 20

A boat sets its instruments so
that it would travel S10◦W at a
speed of 50 kilometers per hour
in still water. However, there
is an eastbound current which
travels at a speed of 5 kilome-
ters per hour. Compute (a) the
speed of the boat in the water,
and (b) the bearing of the boat
in the water.

** Exercise 21

An East wind of speed 10 kilo-
meters per hour, causes a plane
to travel 850 kilometers per hour
at a bearing of N55◦W . What
would be (a) the speed and (b)
the bearing of the plane if it were
in still air?

N

G

•

Figure 3

* Exercise 22
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In Figure 3, suppose the mass of
the box is m.

(a) Assume |G| = 100 N.
Then |N |must equal what
value?

(b) Let m = 20 kg. Calculate
|G|.

(c) If |N | = 10 N, what is m?

(d) Suppose m = 5 kg. Find
|N |.

(e) What is m, if |G| = 78.48
N?

•

G

T

Figure 4

•

* Exercise 23

Consider Figure 4. Let the mass
of the box be m.

(a) Assume |G| = 100 N.
Then |T | must equal what
value?

(b) Let m = 10 kg. Calculate
|G|.

(c) If |T | = 25 N, what is m?

(d) Suppose m = 2 kg. Find
|G|.

(e) What is m, if |T | = 25 N?
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θ

Figure 5

** Exercise 24

In Figure 5, let θ be as shown.
Assumem is the mass of the box
and a is the magnitude of accel-
eration the box. Calculate the
missing variable using the other
two.

(a) m = 100 kg and θ = 60◦

(b) m = 50 kg and a = 6.94
m/s2

(c) m = 75 m/s2 and θ = 20◦

(d) m = 90 kg and a = 3.99
m/s2

** Exercise 25

Consider Figure 5. Let θ be as
shown and a be the magnitude
of acceleration. Prove

a = g sin θ.

•

•
•
α

β

Figure 6

** Exercise 26

In Figure 6, suppose the mass of
the box is 100 kilograms.

(a) Let α = 45◦ and β =
30◦. Calculate the tension
in each cable.

(b) Suppose α = 50◦ and β =
30◦. What is the magni-
tude of tension in each ca-
ble?

(c) Say β = 20◦ and the left
cable contains 25 percent
less tension than the right.
Find α.

(d) Assume α = 60◦ and
the right cable contains 30
percent more tension than
the left. Compute the ten-
sion in the right cable.
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** Exercise 27

Consider Figure 6. Let the mag-
nitude of tension in the left cable
be 300 Newtons, the magnitude
of tension in the right cable be
900 Newtons, and β = 15◦. De-
termine the mass of the box.

*** Exercise 28

In Figure 6, assume the box has
mass 200 kilograms. Use the
given information to calculate α
and β.

(a) Say the magnitude tension
in the left cable is 981
Newtons and the magni-
tude tension in the right
cable is 981

√
3 Newtons.

(b) Suppose the magnitude of
tension in left cable is 700
Newtons and the magni-
tude of tension in the right
cable is 1400 Newtons.

2

•

1

θ

Figure 7

** Exercise 29

Consider Figure 7. Suppose the
mass of box 1 is 100 kilograms.

(a) Let θ = 30◦. Assume the
system is at rest. Calcu-
late the mass of box 2.

(b) Say the mass of box 2 is
75 kilograms. If the sys-
tem is at rest, what is the
measure of θ?

(c) Suppose θ = 60◦ and
box 1 accelerates down the
ramp at 5 m/s2. Find the
mass of box 2.

(d) Assume the mass of box 2
is 80 kilograms and box 1
accelerates up the ramp at
3 m/s2. Compute θ.

* Exercise 30

Let

u = −i+ 2j, v =

(︃
5
−2

)︃
,

and w = i − 4j. Find each of
the following.

(a) u • v

(b) v • w

(c) u • (v +w)

(d) 2u • (2v − 3w)

* Exercise 31

Repeat Exercise 30, except sup-
pose

u =

(︃
−1/2
3

)︃
, v = 6i+ j,

and w = 15i.
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** Exercise 32

Prove properties (iii) and (iv) of
Proposition 11.5.

* Exercise 33

Compute u • v using the given
information. Suppose θ is the
angle between u and v.

(a) |u| = 3, |v| = 2/3, and
θ = 120◦

(b) |u| = 5, |v| = 7, and
θ = π/6

(c) |u| = 5/7, |v| = 21, and
θ = 135◦

(d) |u| = 13, |v| = 10, and
θ = π/2

** Exercise 34

What is the measure of the an-
gle between u and v?

(a) u = i and v = −5j

(b) u = (−3, 0)T and v =
(2, 0)T

(c) u = 1
2i − 3j and v =

2i+ 2j

(d) u =
(︁
−3

√
2,
√
6
)︁T

and

v = (0, 5)
T

(e) u = i− 1j and v = 3i+ j

(f) u = 3
5i + 4

5j and v =

(−12, 5)
T

** Exercise 35

Determine whether the given
vectors are parallel, orthogonal,
or neither.

(a) 3i+ 2j and 9i+ 6j

(b) (2,−3)
T
and (−3, 2)

T

(c)
5

2
i−

√
3

2
j and −3

√
3i+

9

5
j

(d) (1,−2)
T
and 2i+ j

(e) (3, 4)
T
and (3,−4)

T

(f) −3
√
2i + 6j and(︁

10, 5
√
2
)︁T

** Exercise 36

Find two vectors orthogonal to
v.

(a) v = 3i− 5j

(b) v = (2, 7)
T

(c) v = i+ j

(d) v =
(︂
cos 22.5◦, sin 22.5◦

)︂T
** Exercise 37

Compute compuv for the given
u and v.

(a) u = (1,−2)T and v =
(3, 1)T

(b) u = 3i+2j and v = 1
3i+j

(c) u = (5,−12)
T

and v =

(12, 5)
T
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** Exercise 38

Use the vectors u and v in Ex-
ercise 37 to compute projuv.

v

u
projuv

v − projuv

Figure 8

** Exercise 39

The component of v perpendic-
ular to u is

v − projuv.

Figure 8 illustrates the idea.
Calculate the component of v
perpendicular to u.

(a) u = (6, 8)T and v =

(−15, 5)
T

(b) u = −i − 2i and v =
7i+ 7j

(c) u = (12,−9)T and v =

(−15,−45)
T

(d) u =
√
3i − j and v =

i+
√
3j

** Exercise 40

A force F moves an object from
point A to point B. Compute
the work done.

(a) A = (0, 5), B = (7, 4), and

F = (1, 2)
T

(b) A = (1, 2), B = (5, 7), and
F = 2i− 5j

(c) A = (1, 2), B = (−5, 0),

and F = (−1,−4)
T

(d) A = (−3, 2), B = (−1, 5),
and F = (−3, 2)T

(e) A = (4,−2), B = (3,−3),
and F = 7i− 11j

(f) A = (1,
√
π),

B = (1/2,
√
π/3), and

F = (
√
π,−4)

T

F

θ

Figure 9

* Exercise 41

In Figure 9, a force F of mag-
nitude F Newtons is exerted on
a box at an angle θ from hori-
zontal. The box moves d meters
right. Calculate the work done
using the given values.

(a) d = 3, F = 12, and θ = 0

(b) d = 20, F = 5, and θ =
π/4
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(c) d = 10, F = 20, and θ =
90◦

(d) d = 1, F = 13, and θ =
5π/4

** Exercise 42

Consider Figure 5. Suppose the
ramp is d meters long and the
box has mass m kilograms. Use
the given values to calculate the
work required to pull the box up
the ramp.

(a) d = 16, m = 100, and
θ = 10◦

(b) d = 15, m = 20, and
θ = π/6

(c) d = 8, m = 50, and θ =
45◦
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Chapter 12

Complex Numbers

In this chapter, we will study complex numbers. A solid under-
standing of Chapters 1, 3, 5, and 7 is required. Complex numbers
use some of the same ideas as vectors. As a result, knowledge of
Chapter 11 is helpful though not strictly necessary. We will not
use calculators in this chapter.

12.1 The Basics

As you know from algebra class, there are certain polynomials with
no real solution. For example,

z2 + 1 = 0

has no real solution. Our goal is to “fill the gap” in the set of
solvable polynomial equations.

Definition 12.1 Define i to be a solution of z2 + 1 = 0. In other
words, let

i2 = −1 or i =
√
−1.

The existence of i allows us to construct a new number system.

Definition 12.2 The complex numbers are the set

= {a+ bi : a, b ∈ R}.
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We would like to preform arithmetic operations on complex num-
bers, e.g. adding or multiplying two complex numbers. To do
this, we need to introduce a standard representation of a complex
number.

Definition 12.3 A complex number is in standard form when
it is written a+ bi for a and b are real numbers.

So, for example, 7 + 3i is in standard form, but

1 + 4i

2− 3i

is not. Expressions with a minus between the terms, like 7 − 3i,
are considered to be in standard form as well; note that 7 − 3i =
7+ (−3)i. We consider expressions like 1 and 5i to be in standard
form; note that 1 = 1 + 0i and 5i = 0 + 5i.

We are ready to define addition and multiplication of complex num-
bers in standard form.

Definition 12.4 For complex numbers

z1 = a+ bi and z2 = c+ di,

define
z1 + z2 = (a+ b) + (b+ d)i

and
z1z2 = (ac− bd) + (ad+ bc)i.

The following is the natural extension of the corresponding proper-
ties of real numbers and will come as no surprise to most readers.
We include them as a formality.

Proposition 12.1 Suppose z1, z2, and z3 are complex numbers.

(i) (z1 + z2) + z3 = z1 + (z2 + z3)

(ii) z1 + z2 = z2 + z1

(iii) (z1z2)z3 = z1(z2z3)

(iv) z1z2 = z2z1
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(v) z1(z2 + z3) = z1z2 + z1z2 and (z1 + z2)z3 = z1z3 + z2z3

Proposition 12.1 allows us to treat i like a variable in a linear
polynomial with real coefficients. This approach alleviates the need
for substantial amounts of memorization; simply remember that
i2 = −1.

Example 12.1 Let

z1 = 2 + i and z2 = 3− 5i.

Compute (a) z1 + z2 and (b) z1z2.

Solution

(a) Addition of complex numbers uses the same ideas that were
used to combine like terms in algebra.

z1 + z2 = (2 + i) + (3− 5i)

= (2 + 3) + (1− 5)i

= 5− 4i.

(b) Instead of using the multiplication formula, we will use ex-
pansion techniques from algebra.

z1z2 = (2 + i)(3− 5i)

= 6− 10i+ 3i− 5i2

= 6− 7i+ 5

= 11− 7i.

■

Definition 12.5 The complex conjugare of z = a+ bi is

z = a− bi.

Example 12.2 Assume

z1 = 2− 5i and z2 =
1 + 3i

2
.

Find (a) z1 and (b) z2.

Solution
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(a) We have, z1 = 2− 5i = 2 + 5i.

(b) Technically, we need to convert the complex number to stan-
dard form to use the formula. We will show these steps, but
some readers may prefer to omit them because they are ob-
vious.

z2 =
1 + 3i

2

=
1

2
+

3

2
i

=
1

2
− 3

2
i

=
1− 3i

2
.

■

Proposition 12.2 Suppose z = a+ bi. Then

zz̄ = a2 + b2.

Proof We will consider the definition of the conjugate and use
expansion techniques from algebra:

zz̄ = (a+ bi) (a− bi)

= a2 − abi+ abi− (bi)
2

= a2 − b2i2

= a2 − (−1)b2

= a2 + b2.

■

Example 12.3 Let z = 2− 3i. Compute zz̄.

Solution Proposition 12.2 tells us

zz̄ = 22 + (−3)2 = 13.

■
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Proposition 12.3 (Inverses and Identities) Assume z is a com-
plex number.

(i) The number 0 = 0 + 0i is such that

0 + z = z + 0 = z.

(ii) The number 1 = 1 + 0i is such that

1z = z1 = z.

(iii) There exists −z such that

z + (−z) = −z + z = 0.

(iv) If z ̸= 0, then there exists z−1 such that

zz−1 = z−1z = 1.

For complex numbers z1 and z2, we often write

z1 − z2 instead of z1 + (−z2).

Similarly, we will often write

z1
z2

instead of z1z
−1
2 .

In practice, finding the additive inverse of a complex number is no
problem. The additive inverse of a+ bi is simply −a− bi.

Finding the multiplicative inverse is more challenging. The stan-
dard form of the inverse of z = a+ bi ̸= 0 is

z−1 =
a

a2 + b2
− b

a2 + b2
i.

However, this formula is difficult to remember, and rarely used in
practice.

Instead of using our formula, we will introduce a list of procedures
to find the standard form of the inverse of z ̸= 0:
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1. Consider
1

z
.

2. Multiply the top and bottom by z.

3. Divide term by term to write the result in standard form.

Example 12.4 Write the multiplicative inverse of z = 3 − 4i in
standard form.

Solution

z−1 =
1

3− 4i

=
1

3− 4i
· 3 + 4i

3 + 4i

=
3 + 4i

9 + 16

=
3 + 4i

25

=
3

25
+

4

25
i.

■

A similar process can be used to find the standard form of the
quotient of two complex numbers.

Example 12.5 Write
3− 2i

1 + 3i

in standard form.

Solution We will multiply the denominator by the conjugate and

358



simplify:

3− 2i

1 + 3i
=

3− 2i

1 + 3i

1− 3i

1− 3i

=
3− 11i+ 6i2

1 + 9

=
3− 11i− 6

10

=
−3− 11i

10

= − 3

10
− 11

10
i.

■

Proposition 12.4 (Properties of the Conjugate) Suppose z1
and z2 are complex numbers.

(i) z1 + z2 = z1 + z2

(ii) z1z2 = z1̄z2̄

(iii)
z1
z2

=
z1̄
z2̄

Proof We will prove (i) and (ii). Property (iii) will be left as an
exercise. Let

z1 = a+ bi and z2 = c+ di.

(i)

z1 + z2 = a+ c+ (b+ d)i

= a+ c− (b+ d)i

= a+ c− bi− di

= a− bi+ c− di

= a+ bi+ c+ di

= z1 + z2.

(ii) We will compute the left and right side of the equation to
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prove that they are equal. We have

z1z2 = (a+ bi)(c+ di)

= ac− bd+ (ad+ bc)i

= ac− bd− (ad+ bc)i,

and

z1̄z2̄ =
(︁
a+ bi

)︁ (︁
c+ di

)︁
= (a− bi)(c− di)

= ac− bd+ (−ad− bc)i

= ac− bd− (ad+ bc)i.

■

Definition 12.6 The modulus of a complex number z = a+ bi is

|z| =
√︁
a2 + b2.

The plural form of modulus is moduli.

Example 12.6 Compute |5− 12i|.

Solution

|5− 12i| =
√︁
52 + (−12)2

=
√
25 + 144

=
√
169

= 13.

■

Proposition 12.5 For complex numbers z1 and z2,

|z1z2| = |z1| |z2| and

⃓⃓⃓⃓
z1
z2

⃓⃓⃓⃓
=

|z1|
|z2|

.

Before we begin the proof, we note a useful property which follows
from Proposition 12.2:

|z| =
√
zz̄ or |z|2 = zz̄.
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Proof We will prove

|z1z2| = |z1| |z2| .

We will leave the proof of ⃓⃓⃓⃓
z1
z2

⃓⃓⃓⃓
=

|z1|
|z2|

as an exercise.

We have

|z1z2|2 = (z1z2)(z1z2)

= z1z2z1̄z2̄

= (z1z1̄)(z2z2̄)

= |z1|2|z2|2.

Because moduli are always nonnegative real numbers,

|z1z2|2 = |z2|2|z1|2 implies |z1z2| = |z2||z1|.

■

Example 12.7 Suppose z1 = 3− 4i and z2 = 1 + i. Compute (a)
|z1z2| and (b) |z1/z2|.

Solution We will compute |z1| and |z2|, and then use Proposition
12.5:

|z1| = |3− 4i| and |z2| = |1 + i|
=
√︁
32 + (−4)2 =

√
12 + 12

=
√
25 =

√
2

= 5

(a) |z1z2| = |z1| |z2| = 5
√
2

(b)

⃓⃓⃓⃓
z1
z2

⃓⃓⃓⃓
=

|z1|
|z2|

=
5√
2
=

5
√
2

2

■
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12.1.1 Exponents

Definition 12.7 For a complex number z, let

zn = z · z · . . . · z⏞ ⏟⏟ ⏞
n times

for n = 1, 2, 3, . . .. If z ̸= 0, define

z0 = 1.

Example 12.8 Compute

(3− 2i)n

when (a) n = 0, (b) n = 2, and (c) n = 3.

Solution

(a) Since 3− 2i ̸= 0, we have (3− 2i)0 = 1.

(b) This is like our work in Example 1:

(3− 2i)2 = (3− 2i)(3− 2i)

= 9− 12i+ 4i2

= 9− 12i− 4

= 5− 12i.

(c) Since (3− 2i)2 = 5− 12i,

(3− 2i)3 = (3− 2i)2(3− 2i)

= (5− 12i)(3− 2i)

= 15− 46i+ 24i2

= 14− 46i− 24

= −10− 46i.

■

362



An important observation to make is that

i1 = i, i2 = −1, i3 = −i, and i4 = 1.

Example 12.9 Compute i5.

Solution We have

i5 = i4 · i
= 1 · i
= i.

■

Example 12.10 Simplify i953.

Solution Since i repeats itself every multiple of four, we observe

953 = 4(238) + 1.

So,

i953 = i4(238)+1

=
(︁
i4
)︁238 · i1

= 1 · i
= i.

■

Example 12.11 Wirte

−4i7 +
3

i3
+ 3i100

in standard form.

Solution

−4i7 +
3

i3
+ 3i100 = −4i4+3 +

3i

i4
+ 3i4(25)

= −4i4i3 +
3i

i4
+ 3

(︁
i4
)︁25

= −4(1)(−i) +
3i

1
+ 3(1)

= 3 + 7i.
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■

Example 12.12 Write

i+ i2 + i2 + . . .+ i33

in standard form

Solution Notice that the first four terms of the sum add to 0, i.e.

i+ i2 + i3 + i4 = i− 1− i+ 1 = 0.

Furthermore, all consecutive groups of four terms add to 0, e.g.

i5 + i6 + i7 + i8 = i4(i+ i2 + i3 + i4)

= i(0)

= 0.

Since 33 = 4(8) + 1, we arrange our sum into eight consecutive
groups of four terms plus the last term. The eight groups of four
terms are all zero, so the sum is simply equal to the last term. In
other words,

i+ i2 + i2 + . . .+ i33 =
(︁
i+ i2 + i3 + i4

)︁
+
(︁
i5 + i6 + i7 + i8

)︁
+ . . .+

(︁
i29 + i30 + i31 + i32

)︁
+ i33

= 0 + 0 + . . .+ 0 + i33

= i33.

All that is left is to simplify i33:

i33 = i4(8)+1

=
(︁
i4
)︁8

i1

= 1 · i
= i.

In summery,
i+ i2 + i2 + . . .+ i33 = i.

■
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12.1.2 The Complex Plane

Definition 12.8 Consider the complex number z = a+ bi.

• The real part of z is the real number a.

• The imaginary part of z is the real number b.

Example 12.13 What are the real and imaginary parts of

z =
1− 5i

3
?

Solution Since
1− 5i

3
=

1

3
− 5

3
i,

the real part of z is 1/3 and the imaginary part of z is −5/3. ■

The complex plane is a means of representing complex numbers
graphically. The horizontal axis represents the real part of the
complex number and the vertical axis represents the imaginary
part. There is a simple correspondence between points on the xy-
plane and numbers on the complex plane; the point (x, y) occupies
the same location on the xy-plane as z = x+iy does on the complex
plane. So, the complex number a+ bi is plotted as shown.

x

iy

a

b •a+ bi

Example 12.14 Graph the complex numbers (a) −3+2i, (b) 2−i,
(c) 0, and (d) −2i.
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Solution

x

iy

•

•
•

•

−3 −2 −1 1 2 3

−2

−1

1

2
(A)

(B)

(C)

(D)

■

The point corresponding to z = 0 on the complex plane is called
the “origin”, just like on the xy-plane.

Using the Pythagorean Theorem, it is easy to see that the modulus
of z is the distance between the origin and the point z on the
complex plane.

x

iy

|z|•z

Example 12.15 Find the distance between z and the origin on
the complex plane for (a) z = 1− i and (b) z = 3 + 7i.

Solution Since the distance between z and the origin on the com-
plex plane is simply the modulus, we do not need to graph the
complex numbers. We will simply compute their moduli.

(a) The distance between 1 − i and the origin on the complex
plane is √︁

12 + (−1)2 =
√
2.

(b) The distance between 3 + 7i and the origin on the complex
plane is √︁

32 + 72 =
√
58.

■
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12.2 Polar Form

The complex plane gives us a means to represent complex numbers
geometrically. We can utilize this thinking to represent nonzero
complex numbers using their moduli and standard position angles.
Consider z = a+ bi.

x

y

a

b
√
a2 + b2 •a+ bi

θ

Theorem 5.1 tells us that there is an angle θ in standard position
such that

cos θ =
a

r
and sin θ =

b

r

where r =
√
a2 + b2. Hence,

z = a+ bi

= r

(︃
a

r
+

b

r
i

)︃
= r (cos θ + i sin θ) .

This can be further simplified using our next theorem. We omit its
proof because it requires Calculus techniques.

Theorem 12.1 (Euler’s Formula) For all θ in R,

eiθ = cos θ + i sin θ.

Using Euler’s Formula, we conclude

z = r (cos θ + i sin θ) = reiθ.

Definition 12.9
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• The polar form of the complex number z = a+ bi ̸= 0 is

z = reiθ,

where r = |z| and θ is a standard position angle on the com-
plex plane whose terminal side contains z.

• The angle θ is called an argument of z.

Two important remarks:

(i) If z = 0, it is impossible to write the expression in polar form,
because θ cannot be determined.

(ii) Polar form is not unique. Indeed, if θ is an argument, so is
θ + 2πn, for n = 1,−1, 2,−2, . . ..

Example 12.16 Find two polar forms of z = −2 + 2i.

Solution We know

|z| =
√︁
(−2)2 + 22 = 2

√
2.

So, an argument θ must satisfy

cos θ = − 2

2
√
2
= −

√
2

2
and sin θ =

2

2
√
2
=

√
2

2
.

The angle measure θ = 3π/4 is an argument of z, because it satisfies
our equation. Hence, z = −2 + 2i can be written in polar form as

z = 2
√
2e3πi/4.

Since θ = 3π/4 is an argument of z, so is 3π/4 − 2π = −5π/4.
Thus, another polar form of z is

z = 2
√
2e−5πi/4.

■

Example 12.17 Write each expression in standard form.
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(a) z1 = 2eπi/2

(b) z2 = eπi

(c) z3 = 6eπi/6

(d) z4 = 5e−2πi/3

Solution

(a) z1 = 2eπi/2 (b) z2 = eπi

= 2
(︂
cos

π

2
+ i sin

π

2

)︂
= cosπ + i sinπ

= 2 (0 + i) = −1 + 0i
= 2i. = −1.

(c) z3 = 6eπi/6 (d) z4 = 5e−2πi/3

= 6
(︂
cos

π

6
+ i sin

π

6

)︂
= 5

(︃
cos

(︃
−2π

3

)︃
+ i sin

(︃
−2π

3

)︃)︃
= 6

(︄√
3

2
+

1

2
i

)︄
= 5

(︄
−1

2
− i

√
3

2

)︄
= 3

√
3 + 3i. = −5

2
− 5i

√
3

2
.

■

12.3 More on Polar Form

Proposition 12.6 Consider the complex numbers

z1 = r1e
iα and z2 = r2e

iβ .

Then
z1z2 = r1r2e

i(α+β) and
z1
z2

=
r1
r2

ei(α−β).

The proof of this follows due to properties of exponents.

Example 12.18 Assume

z1 =
√
2eiπ/2 and z2 = 2e−iπ/6.

Compute (a) z1z2 and (b) z1/z2. Write the result in standard form.

Solution

369



(a) Using Proposition 12.6,

z1z2 = 2
√
2ei(π/2+(−π/6))

= 2
√
2eiπ/3

= 2
√
2
(︂
cos

π

3
+ i sin

π

3

)︂
= 2

√
2

(︄
1

2
+ i

√
3

2

)︄
=

√
2 + i

√
6.

(b) Proposition 12.6 tells us

z1
z2

=

√
2

2
ei(π/2−(−π/6))

=

√
2

2
e2iπ/3

=

√
2

2

(︃
cos

2π

3
+ i sin

2π

3

)︃
=

√
2

2

(︄
−1

2
+ i

√
3

2

)︄

= −
√
2

4
+ i

√
6

4
.

■

Proposition 12.7 (De Moivre’s Formula) Suppose

z = r (cos θ + i sin θ) ,

where r > 0. Then

zn = rn (cosnθ + i sinnθ)

for all n.

Proof The proof is a simple application of exponent rules and
Euler’s Formula:

z = r (cos θ + i sin θ) = reiθ.
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Hence,

zn =
(︁
reiθ

)︁n
= rn

(︁
eiθ
)︁n

= rneniθ

= rn (cosnθ + i sinnθ) .

■

Example 12.19 Compute the standard form of(︂
1− i

√
3
)︂5

.

Solution Let us find the modulus and an argument of 1 − i
√
3,

and then use Proposition 12.7. We have⃓⃓⃓
1− i

√
3
⃓⃓⃓
=

√︃
12 +

(︂
−
√
3
)︂2

=
√
4

= 2.

It follows that

cos θ =
1

2
and sin θ = −

√
3

2
.

This implies that θ = −π/3 is an argument of 1− i
√
3.

So,

1− i
√
3 = 2

(︂
cos
(︂
−π

3

)︂
+ i sin

(︂
−π

3

)︂)︂
.

Thus, De Moivre’s Formula tells us(︂
1− i

√
3
)︂5

= 25
(︂
cos
(︂
−π

3
(5)
)︂
+ i sin

(︂
−π

3
(5)
)︂)︂

= 25
(︃
cos

(︃
−5π

3

)︃
+ i sin

(︃
−5π

3

)︃)︃
= 32

(︄
1

2
+ i

√
3

2

)︄
= 16 + 16i

√
3.
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■

Example 12.20 Use Euler’s Formula to prove

cos(α+ β) = cosα cosβ − sinα sinβ

and
sin(α+ β) = sinα cosβ + cosα sinβ.

Solution Using Euler’s Formula, we have

eiα = cosα+ i sinα and eiβ = cosβ + i sinβ.

Furthermore,

ei(α+β) = cos(α+ β) + i sin(α+ β).

It follows that

cos(α+ β) + i sin(α+ β)

= ei(α+β)

= eiαeiβ

=
(︂
cosα+ i sinα

)︂(︂
cosβ + i sinβ

)︂
= cosα cosβ + i cosα sinβ + i sinα cosβ + i2 sinα sinβ

=
(︂
cosα cosβ − sinα sinβ

)︂
+ i
(︂
sinα cosβ + cosα sinβ

)︂
.

Since a+ bi = c+ di implies a = c and b = d, we conclude

cos(α+ β) = cosα cosβ − sinα sinβ

and
sin(α+ β) = sinα cosβ + cosα sinβ.

■
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12.3.1 Finding Roots

Let us turn our attention to solving equations like

zn + a = 0.

It is useful to know the number of solutions that such an equation
has. So, we introduce the following theorem.

Theorem 12.2 (Fundamental Theorem of Algebra) Consider

f(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0,

where an, an−1, . . . , and a0 are complex numbers. Counting mul-
tiplicity, the function f has n roots.

The Fundamental Theorem of Algebra is more robust than nec-
essary for our purposes. The following corollary emphasizes the
needed properties.

Corollary 12.1 An equation of the form zn + a = 0 has n unique
solutions if a ̸= 0.

To find the n roots of zn + a proceed as follows:

1. Solve for zn, which yields zn = −a.

2. Write −a in polar form with the general form of the argument
in the exponent, i.e. write −a as

| − a|e(θ+2πk)i,

where θ is an argument of −a.

3. Take the n-th root, which gives

z = n
√︁
| − a|e(θ+2πk)i/n.

4. Evaluate the expression for k = 0, 1, 2, . . . , n − 1. This gives
the n unique solutions.

Example 12.21 Compute the standard form solutions of z3+8 =
0.
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Solution We know z3 = −8. The polar form of −8 is 8e(π+2πk)i.
It follows that

z =
3
√
8e(π+2πk)i/3 = 2e(π+2πk)i/3.

All that is left is to evaluate for k=0, 1, and 2.

k = 0:

z = 2e(π+2π(0))i/3

= 2
(︂
cos

π

3
+ i sin

π

3

)︂
= 2

(︄
1

2
+ i

√
3

2

)︄
= 1 + i

√
3.

k = 1:

z = 2e(π+2π(1))i/3

= 2 (cosπ + i sinπ)

= 2 (−1 + 0i)

= −2.

k = 2:

z = 2e(π+2π(2))i/3

= 2

(︃
cos

5π

3
+ i sin

5π

3

)︃
= 2

(︄
1

2
− i

√
3

2

)︄
= 1− i

√
3.

■

Example 12.22 Find all possible values of z, given that

z3 = −125 + 125i.
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Solution The modulus of −125 + 125i is

|−125 + 125i| =
√︁
(−125)2 + 1252

=
√︁

2(125)2

= 125
√
2.

So,

−125 + 125i = 125
√
2

(︃
− 125

125
√
2
+ i

125

125
√
2

)︃
= 125

√
2

(︃
− 1√

2
+ i

1√
2

)︃
= 125

√
2

(︄
−
√
2

2
+ i

√
2

2

)︄

Because

cos θ = −
√
2

2
and sin θ =

√
2

2
,

the general argument of −125 + 125i is

3π

4
+ 2πk =

(3 + 8k)π

4
.

It follows that

−125 + 125i = 125
√
2e(3+8k)πi/4.

Hence,

z =
3

√︂
125

√
2e(3+8k)πi/12

=
3
√
125

3

√︂√
2e(3+8k)πi/12

= 5
6
√
2e(3+8k)πi/12.

We need to evaluate for k = 1, 2, and 3. To do this, we will use the
Half-Angle Identities

cos
θ

2
= ±

√︃
1 + cos θ

2
and sin

θ

2
= ±

√︃
1− cos θ

2
,

375



where the sign in front is determined by what quadrant the terminal
side of θ/2 lies. Let us evaluate.

k = 0:

z = 5
6
√
2e(3+8(0))πi/12

= 5
6
√
2
(︂
cos

π

4
+ i sin

π

4

)︂
= 5

6
√
2

(︄√
2

2
+ i

√
2

2

)︄

=
5 6
√
2
√
2

2
+ i

5 6
√
2
√
2

2

=
5 6
√
2 6
√
8

2
+ i

5 6
√
2 6
√
8

2

=
5 6
√
16

2
+ i

5 6
√
16

2

k = 1:

z = 5
6
√
2e(3+8(1))πi/12

= 5
6
√
2

(︃
cos

11π

12
+ i sin

11π

12

)︃
= 5

6
√
2

(︃
cos

(︃
11π/6

2

)︃
+ i sin

(︃
11π/6

2

)︃)︃
= 5

6
√
2

(︄
−
√︃

1 + cos(11π/6)

2
+ i

√︃
1− cos(11π/6)

2

)︄

= 5
6
√
2

⎛⎝−

√︄
1 +

√
3/2

2
+ i

√︄
1−

√
3/2

2

⎞⎠
= 5

6
√
2

⎛⎝−

√︄
2 +

√
3

4
+ i

√︄
2−

√
3

4

⎞⎠
=

5 6
√
2

2

(︃
−
√︂

2 +
√
3 + i

√︂
2−

√
3

)︃
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k = 2:

z = 5
6
√
2e(3+8(2))πi/12

= 5
6
√
2

(︃
cos

19π

12
+ i sin

19π

12

)︃
= 5

6
√
2

(︃
cos

(︃
19π/6

2

)︃
+ i sin

(︃
19π/6

2

)︃)︃
= 5

6
√
2

(︄√︃
1 + cos(19π/6)

2
− i

√︃
1− cos(19π/6)

2

)︄

= 5
6
√
2

⎛⎝√︄1−
√
3/2

2
− i

√︄
1 +

√
3/2

2

⎞⎠
= 5

6
√
2

⎛⎝√︄2−
√
3

4
− i

√︄
2 +

√
3

4

⎞⎠
=

5 6
√
2

2

(︃√︂
2−

√
3− i

√︂
2 +

√
3

)︃
.

■

Definition 12.10 An n-th root of unity is a solution of

zn = 1.

Example 12.23 Find the sixth roots of unity.

Solution Since
1 = e2πki,

we have
z6 = 1 implies z = e2πki/6 = eπki/3.
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Hence, the sixth roots of unity are

z = eπ(0)i/3 z = eπ(1)i/3 z = eπ(2)i/3

= 1, = cos
π

3
+ i sin

π

3
= cos

2π

3
+ i sin

2π

3

=
1

2
+ i

√
3

2
, = −1

2
+ i

√
3

2
,

z = eπ(3)i/3 z = eπ(4)i/3

= cosπ + i sinπ = cos
4π

3
+ i sin

4π

3

= −1, = −1

2
− i

√
3

2
,

and

z = eπ(5)i/3

= cos
5π

3
+ i sin

5π

3

=
1

2
− i

√
3

2
.

■

Example 12.24 Let z = e2πi/7. What is the standard form of

1 + z2 + z3 + 2z4 + 2z5 + 2z6 + 2z7 + z8 + z9 + z10?

Solution The complex number z = e2πi/7 is a seventh root of unity
and z ̸= 1. This means

z7 − 1 = (z − 1)(z6 + z5 + z4 + z3 + z2 + z + 1) = 0.

Since z ̸= 1, it follows that

z6 + z5 + z4 + z3 + z2 + z + 1 = 0.
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Hence,

1 + z2 + z3 + 2z4 + 2z5 + 2z6 + 2z7 + z8 + z9 + z10

=
(︁
1 + z2 + z3 + z4 + z5 + z6

)︁
+
(︁
z4 + z5 + z6 + z7 + z8 + z9 + z10

)︁
+ z7

=
(︁
1 + z2 + z3 + z4 + z5 + z6

)︁
+ z4

(︁
1 + z2 + z3 + z4 + z5 + z6

)︁
+ z7

= 0 + z4(0) + z7

= z7

=
(︂
e2πi/7

)︂7
= cos 2π + i sin 2π

= 1.

■

379



12.4 Exercises

* Exercise 1

Suppose

z1 = 3− 5i and z2 = 5+ 12i.

Find each of the following.
Write the results in standard
form.

(a) z1 + z2

(b) 2z1 − 3z2

(c) z1z2

(d) iz1

* Exercise 2

Assume

z1 = 7− 2i and z2 = 1 + i.

Compute. Write the answer in
standard form.

(a)
z1
2

+ z2

(b) 5z1 − 9z2

(c) z1z2

(d) iz2

* Exercise 3

Let

z1 = 2− 3i, z2 = −11 + 7i,

and z3 = 5 − i. What is the
standard form of each of the fol-
lowing?

(a) z1(2z2 − 3z3)

(b) z1(z2z3)

(c) (z1z2)z3

(d) (5z2 + z1)iz3

(e) 5iz2z3 + iz1z3

* Exercise 4

Suppose

z1 =
1

2
−3i and z2 = −2+4i.

Write standard form of each ex-
pression.

(a) z1 + z2

(b) z1 + z2

(c)
z1 + z1

2

(d)
z2 − z2

2

(e) z1z2

(f) z1̄z2̄

* Exercise 5

Say

z1 = 2− 3

2
i and z2 = 5 + 3i.

Determine the standard form of
each expression.

(a) z−11

(b)
1

z2

(c)
z2
z1

(d)
3z1
z2
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* Exercise 6

Calculate zz̄ given z =

(a) 2

(b) 1− i

(c)
3 + i

2

(d) −i
√
3

(e) 5 + 2i

(f)
√
3− i

* Exercise 7

What is the modulus of each
complex number?

(a) −3

(b) 11i

(c) 1 + i

(d) 20− 15i

(e) −
√
3 + i

(f)
5

13
− 12

13
i

(g) 6 + 3i

(h)
1

2
− i

√
11

* Exercise 8

Assume

z1 = 2.4−i and z2 = −1−2i.

Write the expressions in stan-
dard form.

(a) |z1|

(b) |z2|

(c)

⃓⃓⃓⃓
−5z1

2

⃓⃓⃓⃓
(d) |z1z2|

(e)

⃓⃓⃓⃓
z1
z2

⃓⃓⃓⃓
(f)

⃓⃓⃓⃓
z1

2z1 − z2

⃓⃓⃓⃓

** Exercise 9

Find
(1− 3i)n

for each n.

(a) n = −1

(b) n = 0

(c) n = 2

(d) n = 3

** Exercise 10

Compute

(2 + i)n

for each n.

(a) n = −2

(b) n = −1

(c) n = 0

(d) n = 2

** Exercise 11

Simplify.

(a) i423

(b)
2

i107

(c) i52i74

(d)
17i893

i977

** Exercise 12

Write in standard form.

(a) −5 + i33 +
7i34

i15

(b) i22
(︃
2 + i88i13 +

55

i567

)︃
(c)

i135 − 7i134

i23 − 12

381



** Exercise 13

Write the sum as a complex
number in standard form.

(a) 1 + i+ i2 + i3 + i4 + i5

(b) 2i+ 2i2 + . . .+ 2i10 + 2i11

(c) −5i15 − 5i16 − . . .− 5i52

* Exercise 14

Find the real and imaginary
parts of each complex number.

(a) 2− 3i

(b) 4i

(c) −7

(d)
1 + 2i

3

* Exercise 15

Graph on the complex plane.

(a) −3 + i

(b) 1 + i

(c) 5

(d) −2i

(e) 0

(f) −3 + 5i

2

x

iy

−5 −3 −1 1

−2

2

•

•

•

•
•A

B

C

D

E

Figure 1

* Exercise 16

Consider Figure 1. Find the
standard form of the complex
numbers represented by the
points in the complex plane.

* Exercise 17

Compute the distance between
each complex number and the
origin on the complex plane.

(a) 3 + 4i

(b) −12 + 5i

(c) −4

5
+

3

5
i

(d) 1− i

(e) 7i

(f)
1− 2i

2

** Exercise 18

Use the definition of complex
number addition, complex num-
ber multiplication, and the cor-
responding properties for real
numbers to prove Proposition
12.1.

** Exercise 19

Prove Proposition 12.4 (iii).

** Exercise 20

For complex numbers z1 and
z2 ̸= 0, prove⃓⃓⃓⃓

z1
z2

⃓⃓⃓⃓
=

|z1|
|z2|

.

382



** Exercise 21

Find the polar form of each com-
plex number given that the ar-
gument θ is such that 0 ≤ θ <
2π.

(a) 3− 3i
√
3

(b) −
√
15

7
+

i
√
5

7

(c) −i

(d) 5 + 5i

(e) −
√
3− i

√
3

(f) −2

(g) 42i

** Exercise 22

Calculate the polar form of each
complex number given that the
argument θ is such that −π <
θ ≤ π.

(a) −i
√
15

(b) −
√
2 + i

√
2

(c) −
√
3

2
− i

2

(d)
3

2
− i

√
3

2

(e)
π

4
+

πi
√
3

4

(f) −7

(g) 1 + i

** Exercise 23

Write each complex number in
standard form.

(a) πe−5πi/3

(b) 4e11πi/6

(c)
√
6e−πi/3

(d) 3e11πi/4

(e)
√
2e−2πi/3

(f) e2πi

(g)
π
√
2

3
eπi/4

(h) 12e5πi/6

(i) 3e5πi/2

(j)
√
5e−7πi/6

** Exercise 24

Suppose

z1 = 3e7πi/6 and z2 =
1

2
e−5πi/3.

What is the standard form of
each expression?

(a) z1z2

(b)
z1
z2

(c) z31

(d) z−52

** Exercise 25

Repeat Exercise 24, but assume

z1 =
3

2
eπi/3 and z2 =

√
2e−πi/6.

** Exercise 26

Let z = 1 + i. Use polar
form to compute the following.
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Write the final answer in stan-
dard form.

(a) z5

(b) z−6

(c) z−12

(d) z7

** Exercise 27

Suppose z = 1− i
√
3. Use polar

form to find the standard form
of each expression.

(a) z4

(b) z−5

(c) z−7

(d) z6

*** Exercise 28

Use Euler’s Formula to prove

cos(α−β)=cosα cos β+sinα sin β

and

sin(α−β)=sinα cos β−cosα sin β.

*** Exercise 29

Utilize Euler’s Formula to prove

cos(2θ) = cos2 θ − sin2 θ

and

sin(2θ) = 2 sin θ cos θ.

*** Exercise 30

Use Euler’s Formula to prove

cos(−θ) = cos θ

and

sin(−θ) = − sin θ.

** Exercise 31

Find the standard form solu-
tions.

(a) z2 = i

(b) z3 = 125

(c) z4 + 2 = 1

(d) z6 = 64

*** Exercise 32

Find all solutions.

(a) z6 = −1

(b) z3 = −
√
2

2
+

i
√
2

2

(c) z4 = 1− i
√
3

(d) z6 = −64i

** Exercise 33

What is the standard form of (a)
the second, (b) the third, and (c)
the fourth roots of unity?
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** Exercise 34

Suppose z = e2πi/9. Simplify.

z9 + z8 + . . .+ z + 1

*** Exercise 35

Assume z = eπi/3. Write in
standard form.

z5 + 2z4 + z3 + 2z2 + z + 2
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Chapter 13

Polar Coordinates and
Equations

In this chapter, we will study an alternative means to describe
points on a plane. Previously, we studied the xy-coordinate sys-
tem (also called the rectangular coordinate system) and the com-
plex plane. Now we will study the polar coordinate system. Much
likes how the rectangular coordinate system is a good way to de-
scribe geometric objects like lines, the polar coordinate system is
an excellent means to describe other types of geometric objects,
like circles.

A solid understanding of Chapter 5 is necessary. Polar coordinates
use many of the same ideas as vectors and complex numbers. As a
result, knowledge of Chapters 11 and 12 is helpful but not essen-
tial. Theorem 7.1 will be needed for some exercises. This chapter
requires a scientific calculator.

13.1 Polar Coordinates

Definition 13.1

• The pole is the central point of the polar coordinate system.
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• The polar axis is the horizontal ray with endpoint the pole.
By convention, the polar axis points to the right.

1 2
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

•
O

(r, θ)

pole poler axis

θ
r •

Polar coordinates (r, θ)
reference a point via
a signed distance r
and an angle measure
θ. The value r is
the signed distance be-
tween the point and the
pole O. The value
θ is the directed angle
whose initial side is the
polar axis and whose
terminal side contains
the point.

Example 13.1 Graph the polar coordinates.

(a) (2, 180◦)

(b) (2.5, 90◦)

(c) (0.5, 60◦)

(d) (3/2, 225◦)

(e) (9/4, 315◦)

(f) (π/2, 45◦)

Solution

1 2
0

45◦
90◦

135◦

180◦

225◦

270◦
315◦

••

•

•

• •

•
A

C

D
E

FB

■

Let us examine how the signs of θ and r affect points’ locations. To
illustrate this, consider point P which has polar coordinates (1, 0),
i.e. it lies on the polar axis and is one unit away from the pole O.
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1

−π/2
−2π/3

−π/6

0

π/6

2π/3
π/2

2π/3

5π/6

π

7π/6

4π/3

•
•

••

P1

P2P3

•PO

Consider P1. It has polar coordinates (1, π/6). We obtain P1 by
rotating initial side OP to terminal side OP1. This rotation corre-
sponds to a directed angle of measure π/6 radians.

Consider P2 which has polar coordinates (1,−π/6). We obtain P2

via rotating initial side OP to terminal side OP2. This rotation
corresponds to a directed angle of measure −π/6 radians.

Consider P3, which has polar coordinates (−1, π/6). To obtain P3

rotate initial side OP to terminal side OP1. We then reflect P1

about the pole. The result is P3. Notice that another representa-
tion of P3 is the polar coordinates (1, 7π/6).

Proposition 13.1 For all polar coordinates

(−r, θ) = (r, θ + π),

or, more generally,

(−r, θ) = (r, θ + πk)

for k = 1,−1, 3,−3, . . ..

Example 13.2 Consider the polar coordinate (2, π/4). Find an-
other representation such that ...

(a) ... the radius and angle measure are positive.

(b) ... the radius is positive and the angle measure is negative.
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(d) ... the radius is negative and the angle measure is positive.

(c) ... the radius and angle measure are negative.

Solution

(a) Since an additional counterclockwise revolution places the
point at the same location, the point can also be written
as (︂

2,
π

4
+ 2π

)︂
=

(︃
2,

9π

4

)︃
.

(b) A complete clockwise rotation puts the point at the identical
position as well. Hence, the point also has polar coordinates(︂

2,
π

4
− 2π

)︂
=

(︃
2,−7π

4

)︃
.

(c) Proposition 13.1 tells us that adding π to the angle measure
negates the radius. Ergo, a representation with a negative
radius and positive angle measure is(︂

−2,
π

4
+ π

)︂
=

(︃
−2,

5π

4

)︃
.

(d) We will use our work from (c). Since a complete clockwise
rotation places the point at the same spot, the point is de-
scribed by polar coordinates(︃

−2,
5π

4
− 2π

)︃
=

(︃
−2,−3π

4

)︃
.

■

We will now develop a means to convert between the polar coordi-
nate system and the xy-coordinate systems. Assume:

The pole has the same location as the origin, the polar
axis contains the positive x-axis, and the ray defined by
θ = π/2 and r ≥ 0 contains the positive y-axis.

Proposition 13.2 Suppose the rectangular coordinates (x, y) and
polar coordinates (r, θ) describe the same point. Then

x = r cos θ, y = r sin θ, tan θ =
y

x
, and x2 + y2 = r2.
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y
(r, θ)

r

x

y

x

•

θ

These conversions are fairly clear in quadrant I.
Proposition 13.2 follows generally due to Theorem
5.1 and a bit of tinkering with the signs. We will
skip the proof because it is tedious and adds very
little insight.

Example 13.3 Convert the polar coordinates to
xy-coordinates.

(a)

(︃
3

2
,
π

3

)︃
, (b)

(︃
−2,

5π

6

)︃
, and (c)

(︃
1,

3π

2

)︃
Solution

(a) Since r = 3/2 and θ = π/3,

x =
3

2
cos

π

3
=

3

4
and y =

3

2
sin

π

3
=

3
√
3

4
.

Therefore, the xy-coordinate form is (3/4, 3
√
3/4).

(b) Because r = −2 and θ = 5π/6,

x = −2 cos
5π

6
=

√
3 and y = −2 sin

5π

6
= −1.

Thus, the xy-coordinates are (
√
3,−1).

(c) Due to the fact that r = 1 and θ = 3π/2,

x = 1 cos
3π

2
= 0 and y = 1 sin

3π

2
= −1.

Ergo, the xy-coordinate form of our point is (0,−1). ■

Example 13.4 Convert the xy-coordinates to polar coordinates.

(a) (3, 0)

(b) (2, 2)

(c) (0,−1)

(d)
(︁
−2,−2

√
3
)︁ (e)

(︁√
3,−1

)︁
(f) (−3, 4)

Solution Let us graph these points, so that we know where they

391



lie. This will help us find θ later.

x

y

−3−2−1 1 2 3

−4

−2

2

4

A

B

C

D

E

F

•

•

•

•

•

•

We will assume r is positive.

(a) Using Proposition 13.2,

r2 = 32 + 02 implies r = 3.

By inspection of the graph, we conclude θ = 0. Hence, a
polar representation of our point is (3, 0).

(b) Due to Proposition 13.2,

r2 = 22 + 22 implies r = 2
√
2.

Since (2, 2) is in quadrant I,

tan θ =
2

2
= 1 implies θ = arctan 1 =

π

4
.

Thus, a polar representation is (2
√
2, π/4).

(c) Proposition 13.2 tells us

r2 = 02 + (−1)2 implies r = 1.

Since (0,−1) is on the negative y-axis, θ = 3π/2. Hence,
(1, 3π/2) is a polar coordinate representation of our point.

(d) Because of Proposition 13.2,

r2 = (−2)2 + (−2
√
3)2 implies r = 4.
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We have

tan θ =
−2

√
3

−2
=

√
3.

This implies that the reference angle is π/3. Since θ is in
quadrant III, it follows that

θ =
π

3
+ π =

4π

3
.

We conclude that a solution is (4, 4π/3).

(e) We utilize Proposition 13.2 to conclude

r2 = (
√
3)2 + (−1)2 implies r = 2.

Since

tan θ = − 1√
3
= −

√
3

3
,

the reference angle is π/6. Because θ is in quadrant IV,

θ = 2π − π

6
=

11π

6
.

Ergo, a solution is (2, 11π/6).

(f) Due to Proposition 13.2,

r2 = (−3)2 + 42 implies r = 5.

We know tan θ = −4/3. This implies the reference angle is
arctan(4/3) ≈ 0.927 radians. Since we are in quadrant II, we
conclude

θ = π − arctan
4

3
≈ 2.214 rad.

A polar representation of our point is(︄
5, π − arctan

4

3

)︄
≈ (5, 2.214).

■

Since the polar representation of a point is not unique, there are
other correct answers. We chose to have r > 0 and 0 ≤ θ < 2π.
However, this was simply our preference. There are many other
options. For example, we could let θ = arctan(y/x) and place the
point in the correct quadrant via changing the sign of r.
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13.2 Basic Polar Graphs

Proposition 13.3

• The graph of θ = a is a line through the pole with slope tan a
for a any degree or radian measure.

• The graph of r = b, where b is a real number, is a circle with
center at the pole and radius |b|.

Example 13.5 Graph θ = 60◦. What is its slope?

Solution The graph includes all of the points of the form (r, 60◦),
where r is a real number. This describes a line. Its slope is
tan 60◦ =

√
3.

1 2

30◦

90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

•O

θ = 60◦

■

Example 13.6 Graph r = 3/2. What is its radius?

Solution The graph contains all the points of the form (3/2, θ),
where θ is any radian measure. So, it is a circle. Its radius is 3/2.
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1 2

π/6

π/3
π/2

2π/3

5π/6

π

7π/6

4π/3
3π/2

5π/3

11π/6

•
O

r = 3
2

■

Some graphs require a fair amount of point plotting.

Example 13.7 Graph r = θ/4, where 0 ≤ θ < 2π.

Solution Our first task is to construct a table of values. We will
start at θ = 0 and go in increments of π/2. The point corresponding
to θ = 2π will be in our table, though this value is not included in
the graph; we will draw an open circle there.

θ 0
π

2
π

3π

2
2π

r 0
π

8

π

4

3π

8

π

2

1
0

π/6

π/3
π/2

2π/3

5π/6

π

7π/6

4π/3
3π/2

5π/3

11π/6

•
O

•
•

•

•

r =
θ

4
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■

Example 13.8 Graph r =
3

2
− sin θ.

Solution We will start our table at 0 and go in increments of a
fourth the period. That is, our increments will be 360◦/4 = 90◦.

θ 0 90◦ 180◦ 270◦ 360◦

r
3

2

1

2

3

2

5

2

3

2

1 2 3
0

45◦

90◦

135◦

180◦

225◦ 270◦

315◦

•
O

•
•

•

•

r =
3

2
− sin θ

■

Proposition 13.4

• The graph of r = a cos θ is a circle of radius |a|/2 and center
(a/2, 0).

• The graph of r = a sin θ is a circle of radius |a|/2 and center
(0, a/2).

Proof We will prove the graph of r = a cos θ is a circle, and leave
r = a sin θ as an exercise. Recall that the equation of a circle with
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radius |a|/2 and center (a/2, 0) is(︂
x− a

2

)︂2
+ y2 =

a2

4
.

Our task is to prove r = a cos θ converts to the equation above.
Using Proposition 13.2, we have

r = a cos θ

⇒ r2 = ar cos θ

⇒ x2 + y2 = ax

⇒ x2 − ax+ y2 = 0

⇒ x2 − ax+
a2

4
+ y2 =

a2

4

⇒
(︂
x− a

2

)︂2
+ y2 =

a2

4
.

■

Example 13.9 Graph r = 2 cos θ.

Solution This is a circle of radius 1 and center (1, 0).

1 2
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

•
O

r = 2 cos θ

■
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Proposition 13.5

• The polar equation r = a sec θ has a corresponding rectangu-
lar equation x = a.

• The polar equation r = a csc θ has a corresponding rectangu-
lar equation y = a.

Proof We will prove r = a sec θ is equivalent to x = a, and leave
the rest of the proposition as an exercise.

r = a sec θ

⇒ r =
a

cos θ
⇒ r cos θ = a
⇒ x = a

■

Example 13.10 Graph r = sec θ and r = −2 csc θ.

Solution Due to Proposition 13.5, the graph of r = sec θ is equiva-
lent to x = 1 and the graph of r = −2 csc θ is equivalent to y = −2.

1 2 3
0

45◦

90◦

135◦

180◦

225◦ 270◦

215◦

•
O

r = sec θ

r = −2 csc θ

■

In our last two examples, we will convert between equations in the
xy-coordinate and polar coordinate systems. Many of the ideas
have already been used in proofs, but an ability to convert between
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the two systems is important, so we will provide an ample amount
of material to help students learn.

Example 13.11 Convert xy-coordinate system equation

y = x2

into a polar equation.

Solution Since

x = r cos θ and y = r sin θ

we have
y = x2

⇒ r sin θ = (r cos θ)
2

⇒ r sin θ = r2 cos2 θ

⇒ r =
sin θ

cos2 θ

=
1

cos θ
· sin θ
cos θ

= sec θ tan θ.

So, the corresponding polar equation is

r = sec θ tan θ.

■

Example 13.12 Convert

r2 = 4 sin θ

into an equation in the xy-coordinate system.

Solution Since

r2 = x2 + y2 and sin θ =
y√︁

x2 + y2
,
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it follows that

r2 = 4 sin θ

⇒ x2 + y2 =
4y√︁

x2 + y2

⇒
(︁
x2 + y2

)︁√︁
x2 + y2 = 4y

⇒
(︁
x2 + y2

)︁3/2
= 4y.

■

13.3 Intermediate Polar Graphs

Proposition 13.6 (Symmetry Tests) Consider an equation in
polar form.

• Its graph is symmetric about the line θ = π/2 if replacing
(r, θ) by (−r,−θ) or (r, π−θ) produces an equivalent equation.

• Its graph is symmetric about the polar axis if replacing (r, θ)
by (r,−θ) produces an equivalent equation.

• Its graph is symmetric about the pole if replacing (r, θ) by
(−r, θ) or (r, π + θ) produces an equivalent equation.

Example 13.13 Determine the symmetry of each equation’s graph.

(a) r = cos 2θ

(b) r =
1

2
+ sin θ

(c) r2 = sin θ

(d) r = sin 3θ

Solution

(a) If we replace (r, θ) with (r,−θ), then

r = cos(−2θ) = cos 2θ,

because cosine is even. That means (a) is symmetric about
the polar axis.

400



(b) We will replace (r, θ) with (r, π − θ), and use Theorem 7.1
to prove the resulting expression is equivalent to the original.
This will prove (b) is symmetric about the line θ = π/2:

r =
1

2
+ sin(π − θ)

=
1

2
+ sinπ cos θ − sin θ cosπ

=
1

2
+ sin θ.

(c) Replacing (r, θ) with (−r, θ) yields

(−r)2 = sin θ implies r2 = sin θ.

Hence, (c) is symmetric about the pole.

(d) Let us replace (r, θ) with (−r,−θ). Since sine is odd,

−r = sin(−3θ)
⇒ −r = − sin 3θ
⇒ r = sin 3θ.

We conclude that (d) is symmetric about the line θ = π/2.

■

Example 13.14 Graph r = cos 2θ.

Solution Example 13 (a) proved the graph of r = cos 2θ is sym-
metric about the polar axis, so we only to plot points between 0
and π. The period of cos 2θ is π, so let us go in increments of π/4.

θ 0
π

4

π

2

3π

4
π

r 1 0 −1 0 1
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As of now, we have the following graph.

1
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

• ••

•

••

r = cos 2θ

Symmetry about the polar axis allows us to complete the graph
without plotting any more points.

1
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

• ••

•

••

r = cos 2θ

■

Example 13.15 Graph r = 1/2 + sin θ.

Solution Because replacing (r, θ) with (r, π−θ) gives an equivalent
equation, the graph is symmetric about θ = π/2. So, we only need
to graph the equation from −π/2 to π/2.

Negative values of r make the graph more challenging. As a result,
checking the zeros of the equation is helpful. We have

1

2
+ sin θ = 0 implies sin θ = −1

2
.
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Since we are considering values of θ in the interval [−π/2, π/2], the
only zero of interest is θ = −π/6.

Let us plot some points. We will start at −π/2. Normally, we
go in increments of a fourth the period, which would be π/2 for
r = 1/2 + sin θ. However, we will go in increments of π/4 to be
safe.

θ −π

2
−π

4
0

π

4

π

2

r −1

2

1−
√
2

2
≈ −0.207

1

2

1 +
√
2

2
≈ 1.207

3

2

Thus far we have the following graph.

1

−π/2

−π/4

0

π/4

π/2

3π/4

π

5π/4

•
O

•
• •

•
•

r =
1

2
+ sin θ

Symmetry about the line θ = π/2 allows us to quickly sketch the

403



rest of the graph.

1

−π/2

−π/4

0

π/4

π/2

3π/4

π

5π/4

•
O

•
• •

•
•

r =
1

2
+ sin θ

■

Example 13.16 Graph r2 = sin θ.

Solution Example 13 (c) proved the graph of r2 = sin θ is sym-
metric about the pole. Knowing this, we will only consider values
of θ such that 0 ≤ θ ≤ π.

It is clear that the only zeros of sin θ within our interval occur at
θ = 0 and π.

Let us plot some points. We will go in increments of π/2 and start
at 0.

θ 0
π

2
π

r 0 ±1 0
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Plotting points and connecting the dots gives us the following.

1

−π/2

−π/4

0

π/4

π/2

3π/4

π

5π/4

•
O

•

•

••

•

•

r2 = sin θ

This graph is already symmetric about the pole, so we are done. ■

Example 13.17 Graph r = sin 3θ.

Solution Because replacing (r, θ) with (−r,−θ) produces an equiv-
alent equation, the graph is symmetric about the line θ = π/2. As
a result, we will suppose −π/2 ≤ θ ≤ π/2. Symmetry will allow us
to complete the graph.

Let us check the zeros. If

sin 3θ = 0 and − π

2
≤ θ ≤ π

2
,

then
θ = −π

3
, 0, or

π

3
.

We will start at −π/2 and go in increments of a fourth of the
period. Since the period is 2π/3 our increment will be

2π/3

4
=

π

6
.
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θ −π

2
−π

3
−π

6
0

π

6

π

3

π

2

r 1 0 −1 0 1 0 −1

This gives us the graph below, which is already symmetric about
θ = π/2 so we are done.

1

−π/2
−π/3

−π/6

0

π/6

π/3

π/2

2π/3

5π/6

π

7π/6

4π/3

•

•

•

•

•

•

•

•

■

The graphs in Examples 14 and 17 are called “rose curves” of four
and three “petals”, respectively. There are rules that can be used
to graph rose curves easily.

Proposition 13.7 The graph of

r = a cosnθ and r = a sinnθ

are rose curves, when n is an integer greater than or equal to 2. If
n is even, then there are 2n petals. If n is odd, then there are n
petals. Each petal has length |a|.

Example 13.18 Graph r = cos 4θ.

Solution This is a rose curve with eight petals. The first petal
occurs between the positive and negative zeros of r closest to θ = 0.
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These zeros are θ = −12.5◦ and θ = 12.5◦. We can find subsequent
petals using similar reasoning or via the use of symmetry. For
example, the next petal occurs in the interval [12.5◦, 57.5◦].

1

−90◦

−45◦

0

45◦

90◦

135◦

180◦

225◦

r = cos 4θ

■

13.4 Classification of Polar Graphs

Our last section addresses the classification of polar graphs. We
have already covered circles, lines, and rose curves, but they are
included here for completeness.

Lines The graph of the polar equations θ = a is a line for a any
degree or radian measure. The slope of the line is tan a.

θ = a

The equations of vertical and horizontal lines in rectangular coor-
dinates are x = a and y = a, respectively. The corresponding polar

407



equations are r = a sec θ and r = a csc θ, respectively.

r = a csc θ r = a sec θ

Circles The graph of the polar equation r = a is a circle with
center at the pole and radius |a|.

r = a

A circle of radius |a|/2 centered at (a/2, 0) has polar equation

r = a cos θ.

A circle of radius |a|/2 centered at (0, a/2) has polar equation

r = a sin θ.

Limaçons A limaçon graph is obtain via the polar equation

r = a+ b cos θ or r = a+ b sin θ.
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Our graphs suppose r = a+ b cos θ, a > 0, and b > 0.

An inner loop limaçon occurs when |a/b| < 1.

A “cardioid” (heart shape) occurs when |a/b| = 1.

A dimpled limaçon occurs when 1 < |a/b| < 2.

A convex limaçon occurs when |a/b| ≥ 2.

Rose curve The polar equations which produce rose curves are

r = a cosnθ and r = a sinnθ,

where n is an integer greater than or equal to 2.

If n is even, the rose curve has 2n petals of length |a|. If n is odd,
the rose curve has n petals of length |a|. We suppose a > 0 in our
graphs.
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r = cos 2θ r = cos 3θ

r = sin 2θ r = sin 3θ

Lemniscates A polar equation which produces a graph of a lem-
niscate is of the form

r2 = a2 cos 2θ or r2 = a2 sin 2θ,

where a ̸= 0. The length of the entire lemniscate in either case is
2|a|.

r2 = a2 cos 2θ r2 = a2 sin 2θ
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13.5 Exercises

* Exercise 1

Graph the polar coordinates.

(a)
(︂
1,

π

6

)︂
(b)

(︃
1

3
, 300◦

)︃
(c)

(︃
3

4
,
π

4

)︃
(d) (2, 135◦)

(e)

(︃
π,

3π

2

)︃
(f) (4, 180◦)

(g)
(︂
0.2,

π

2

)︂
(h) (3, 210◦)

** Exercise 2

Graph the polar coordinates.

(a) (−2,−315◦)

(b)

(︃
−1.5,

3π

4

)︃
(c) (5,−360◦)

(d)

(︃
−1

2
,
11π

3

)︃

(e)
(︁√

2,−210◦
)︁

(f)

(︃
−3

4
,
2π

3

)︃
(g) (6,−495◦)

(h) (−π, 2.5π)

1 2 3
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

•
•

•
• •

•

•

• • A

B
C

D

E

F

G

H

Figure 1

* Exercise 3

Consider Figure 1. Write polar
coordinates for each point.

** Exercise 4

Consider each polar coordi-
nate. Find another representa-
tion such that ...

(i) ... the radius and angle
measure are positive.

(ii) ... the radius is positive
and the angle measure is
negative.

(iii) ... the radius is negative
and the angle measure is
positive.

(iv) ... the radius and angle
measure are negative.

(a) (1, 330◦)

(b)

(︃
1

2
, 0

)︃
(c) (5, 135◦)

(d)

(︃
2.5,

4π

3

)︃
(e) (−2,−345◦)

(f)
(︂
−1,−π

2

)︂
** Exercise 5

Convert the polar coordinates to
xy-coordinates.

(a) (3, 270◦)

(b)

(︃√
6,−5π

6

)︃
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(c) (−2, 90◦)

(d)

(︃
7
√
2,

3π

4

)︃
(e) (−4, 420◦)

(f)

(︃
3

2
,−13π

4

)︃
** Exercise 6

Convert the xy-coordinates to
polar.

(a) (−2, 2)

(b)

(︄
−
√
3

2
,−3

2

)︄
(c) (0, 4)

(d)
(︁
3,−

√
3
)︁

(e) (−1, 0)

(f)
(︁
3
√
2, 3

√
2
)︁

** Exercise 7

Convert the xy-coordinate sys-
tem equations to polar equa-
tions.

(a) x2 + y2 = 1

(b) x2 + (y + 2)2 = 4

(c) y = 5

(d) y = x

(e) y = −2x2

(f) y = x+ 1

(g) (x− 3)2 + (y + 1)2 = 10

(h) y =
1

x

(i) y2 − x2 = 1

** Exercise 8

Convert the polar equations to
equations in the xy-coordinate
system.

(a) r = 2

(b) r = 2 cos θ

(c) θ =
5π

6

(d) r2 = sin θ

(e) r = θ

(f) r = −3 sec θ

(g) r2 = sin 2θ

(h) r =
1

1− sin θ

(i) r2 = sec 2θ

** Exercise 9

Prove the graph of the polar
equation r = a csc θ is equiva-
lent to the rectangular equation
y = a.

** Exercise 10

Prove the graph of polar equa-
tion r = a sin θ is a circle of ra-
dius |a|/2 and center (0, a/2).
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*** Exercise 11

Prove the distance between the
polar coordinates (r1, θ1) and
(r2, θ2) is

d =
√︂
r21 + r22 − 2r1r2 cos (θ1 − θ2).

Hint: Convert the points to
their rectangular form and then
use the xy-coordinate system
distance formula

d =
√︁
(x2 − x1)2 + (y2 − y1)2.

** Exercise 12

Use the result of Exercise 11 to
compute the distance between
the polar coordinates.

(a) (8, 30◦) and (6, 120◦)

(b)

(︃
−15

√
3,

11π

10

)︃
and

(︃
30,

4π

15

)︃
(c) (4,−110◦) and (2, 190◦)

** Exercise 13

Graph.

(a) θ = π/2

(b) r = 2 csc θ

(c) r = −3 sec θ

(d) θ = −45◦

(e) r − sec θ = 0

(f) θ =
5π

3

1 2 3
0

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

•
(a)

(b)

(c)

Figure 2

** Exercise 14

Consider Figure 2. Find a polar
equations for each line.

** Exercise 15

Graph.

(a) r = 5

(b) r = 2 sin θ

(c) r = −1

(d) r = 4 cos θ

(e) r = sin θ

(f) r = −3

2

** Exercise 16

Graph.

(a) r = θ/2
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(b) r = eθ

(c) r = 1− cos θ

(d) r = 3− sin 2θ

** Exercise 17

Use Proposition 13.6 to deter-
mine the symmetry of the fol-
lowing polar equations.

(a) r = cos θ

(b) r2 = sin 2θ

(c) r = cos 2θ

(d) r = 2 + sin θ

(e) r = 2 + 3 cos θ

(f) r = 10 csc θ

(g) r2 = sin 3θ

(h) r = 3

* Exercise 18

Determine the number of petals
contained in each polar equa-
tion’s rose curve.

(a) r = 3 cos 10θ

(b) r = −5 sin 7θ

(c) r = −2 cos(−3θ)

(d) r = π sin 22θ

** Exercise 19

Graph.

(a) r = −2 sin 3θ

(b) r = 3 cos 2θ

(c) r = 2 sin 4θ

(d) r = − cos 3θ

** Exercise 20

(i) Classify the graphs on
pages 415 and 417 based
in the categories in Section
13.4.

(ii) Write corresponding polar
equations for each graph.
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** Exercise 21

Graph.

(a) r2 = sin 2θ

(b) r = 1− 3 cos θ

(c) r = 3− sin θ

(d) r2 = cos 2θ

(e) r = 3 + 2 cos θ

(f) r2 = 4 cos 2θ

(g) r2 = 9 sin 2θ

(h) r = 2 + 2 sin θ

** Exercise 22

Graph.

(a) r2 = 9 cos 2θ

(b) r = −1.5 cos 4θ

(c) r =
5

2
+ cos θ

(d) r2 = sin 2θ

(e) r = 2− 4 sin θ

(f) r =
5 sin 3θ

2

(g) r = cos θ

(h) r = 10 csc θ
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1

−90◦

−45◦

0

45◦

90◦

135◦

180◦

225◦

•
O 1 2

−π/2

−π/4

0

π/4

π/2

3π/4

π

3π/4

•O

(a) (b)

1 2 3
0

45◦

90◦

135◦

180◦

225◦

270◦

315◦

•O
1 2

−π/2

−π/4

0

π/4

π/2

3π/4

π

5π/4

•

(c) (d)

1 2

−135◦

−90◦

−45◦

0

45◦

90◦

135◦

180◦ •O
1 2

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

•
O

(e) (f)
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1 2

−90◦

−45◦

0

45◦

90◦

135◦

180◦

225◦

•
O 1 2

−3π/4

−π/2

−π/4

0

π/4

π/2

3π/4

π •

(g) (h)

1 2

−135◦

−90◦

−45◦

0

45◦

90◦

135◦

180◦ •
1 2

−π/2

−π/4

0

π/4

π/2

3π/4

π

3π/4

•O

(i) (j)

1 2 3
0

45◦

90◦

135◦

180◦

225◦

270◦

315◦

•O
1

−π/2

−π/4

0

π/4

π/2

3π/4

π

3π/4

•

(k) (l)
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Appendix A

Rational Expressions
and Equations

Definition A.1 A rational expression is any expression of the
form

amxm + am−1x
m−1 + . . .+ a1x+ a0

bnxn + bn−1xn−1 + . . .+ b1x+ b0
,

where am, am−1, . . . , a0, bn, bn−1, . . . , and b0 are constants.

Definition A.2 Consider an expression of the form

p(x)

q(x)
.

The top function p(x) is the numerator and the bottom function
q(x) is the denominator.
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Example A.1 Simplify when possible.

(a)
x2 + x

2x− x2
, (b)

x2 + x

x+ 1
, (c)

x− 2

2− x
, and (d)

x+ 1

2− x
.

Solution To simplify a rational expression, factor the numerator
and denominator. Factors held in common between the top and
bottom cancel.

(a) We have
x2 + x

2x− x2
=

x(x+ 1)

x(2− x)
.

In this case, a factor of x is held in common between the
numerator and denominator, so it cancels:

◁x(x+ 1)

◁x(2− x)
=

x+ 1

2− x
.

(b) First, we factor:

x2 + x

x+ 1
=

x(x+ 1)

x+ 1
.

The x+ 1 in the numerator and denominator cancel:

x����(x+ 1)

���x+ 1
=

x

1
= x.

(c) Sometimes factoring out a negative allows us to cancel:

x− 2

2− x
=

x− 2

−(−2 + x)
=

x− 2

−(x− 2)
.

The x− 2 in the numerator and denominator cancel:

���x− 2

−����(x− 2)
=

1

−1
= −1.

(d) The numerator and denominator of

x+ 1

2− x

have no common factors. Hence, there is no cancelation.
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■

Complex fractions sometimes arise in problems. As a result, it is
important to know how to simplify them. The following identity is
useful

a/b

c/d
=

a

b
· d
c
=

ad

bc
.

Example A.2 Simplify

2w2 − 7w − 15

w2 − 1
w2 − 25

w2 + 2w + 1

.

Solution The first step is to factor:

2w2 − 7w − 15

w2 − 1
w2 − 25

w2 + 2w + 1

=

(2w + 3)(w − 5)

(w − 1)(w + 1)

(w − 5)(w + 5)

(w + 1)2

.

We are ready to flip, cancel, and multiply:

(2w + 3)(w − 5)

(w − 1)(w + 1)

(w − 5)(w + 5)

(w + 1)2

=
(2w + 3)����(w − 5)

(w − 1)����(w + 1)
· (w + 1)▷2

����(w − 5)(w + 5)

=
2w + 3

w − 1
· w + 1

w + 5

=
(2w + 3)(w + 1)

(w − 1)(w + 5)
.

■

Since any algebraic expression can be written as the ratio of itself
and 1, the identity

a/b

c/d
=

ad

bc

can be used to simplify ratios of the form

a/b

c
and

a

b/c
.
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In particular, we have

a/b

c
=

a/b

c/1
and

a

c/d
=

a/1

c/d

=
a

b
· 1
c

=
a

1
· d
c

=
a

bc
, =

ad

c
.

Example A.3 Simplify

1− 2x+ 3

x2 + x+ 1
x+ 1

.

Solution We will convert the numerator into a single fraction, and
then factor:

1− 2x+ 3

x2 + x+ 1
=

x2 + x+ 1

x2 + x+ 1
− 2x+ 3

x2 + x+ 1

=
x2 + x+ 1− (2x+ 3)

x2 + x+ 1

=
x2 − x− 2

x2 + x+ 1

=
(x− 2)(x+ 1)

x2 + x+ 1
.

We put the denominator over one, flip, cancel, and multiply:

(x− 2)(x+ 1)

x2 + x+ 1
x+ 1

1

=
(x− 2)����(x+ 1)

x2 + x+ 1
· 1

���x+ 1
=

x− 2

x2 + x+ 1
.

■

Definition A.3 A rational equation is an equation which con-
tains one or more rational expressions.
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Cross-multiplication is a useful technique for solving rational equa-
tions. It says

a

b
=

c

d
is equivalent to ad = bc.

Example A.4 Solve

t+ 6

t− 2
=

t+ 10

t− 6
.

Solution Using cross-multiplication,

t+ 6

t− 2
=

t+ 10

t− 6
implies (t+ 6)(t− 6) = (t− 2)(t+ 10).

All that is left is to expand and solve:

(t+ 6)(t− 6) = (t− 2)(t+ 10)
⇒ t2 − 36 = t2 + 8t− 20
⇒ −16 = 8t
⇒ t = −2.

■
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Appendix B

Radical Expressions

Our goal is to provide a sketch of the prerequisite knowledge of
radicals required for the main text. Of particular emphasis are
square roots, though radicals of an arbitrary index are studied as
well.

B.1 Square Roots

Definition B.1 The square root of x, denoted
√
x, is the function

defined by the relationship

y =
√
x if y2 = x

for x ≥ 0 and y ≥ 0.

In Chapter 12, we will expand this definition to include values of
x less than zero.
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Example B.1 Evaluate (a)
√
64 and (b)

√
0 without a calculator.

Solution

(a) We know 82 = 64 and 8 ≥ 0, so we conclude

√
64 = 8.

(b) Because 02 = 0 and 0 ≥ 0, we have

√
0 = 0.

■

Proposition B.1 Suppose a ≥ 0 and b ≥ 0. Then

√
ab =

√
a ·

√
b.

Furthermore, if b ̸= 0, √︃
a

b
=

√
a√
b
.

Example B.2 Simplify. (a)
√
48 and (b)

√︃
5

16
.

Solution

(a) Notice that 48 = 16 · 3. Hence,

√
48 =

√
16 · 3

=
√
16 ·

√
3

= 4
√
3.

(b) We have √︃
5

16
=

√
5√
16

=

√
5

4
.

■
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Definition B.2 A number is rational if it can be written in the
form

a

b
,

where a = 0, 1,−1, 2,−2, . . . and b = 1,−1, 2,−2, . . .. When a real
number is not rational, we say that it is irrational.

Some square root expressions are not rational numbers. For exam-
ple, √

2 = 1.4142135 . . .

is an irrational number because it cannot be written as a ratio of
two integers.

Expressions with rational denominators are considered to be more
simple. As a result, it is important to know how to rationalize
denominators.

Example B.3 Simplify (a)
6√
3
and (b)

√
14√
21

.

Solution

(a) Because
√
3 ·

√
3 = 3, we can rationalize the denominator by

multiplying the top and bottom of that ratio by
√
3:

6√
3
=

6√
3
·
√
3√
3
=

6
√
3

3
= 2

√
3.

(b) Since
√
21 ·

√
21 = 21, we will multiply the top and bottom

of the ratio by
√
21. So,

√
14√
21

=

√
14√
21

·
√
21√
21

=

√
49 · 6
21

=
7
√
6

21

=

√
6

3
.
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■

Sometime we need to multiple the top and bottom of a ratio by
the “conjugate radical” to simplify. The conjugate radical of

√
a+

√
b is

√
a−

√
b

and the conjugate radical of

√
a−

√
b is

√
a+

√
b.

Multiplying the sum or difference of two radicals by the conjugate
radical is effective because it utilizes the difference of two squares
identity

(x− y)(x+ y) = x2 − y2.

In particular, with radicals this identity tells us(︂√
a−

√
b
)︂(︂√

a+
√
b
)︂
=
(︂√

a
)︂2

−
(︂√

b
)︂2

= a− b.

Example B.4 Simplify.

(a)
7√

5−
√
2
and (b)

√
15√

3− 2
.

Solution

(a) The conjugate of
√
5−

√
2 is

√
5 +

√
2. So,

7√
5−

√
2
=

7√
5−

√
2
·
√
5 +

√
2√

5 +
√
2

=
7
(︁√

5 +
√
2
)︁

5− 2

=
7
(︁√

5 +
√
2
)︁

3
.
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(b) The conjugate of
√
3− 2 is

√
3 + 2. Hence,

√
15√

3− 2
=

√
15√

3− 2
·
√
3 + 2√
3 + 2

=

√
15
(︁√

3 + 2
)︁

3− 4

=

√
45 + 2

√
15

−1

= −3
√
5− 2

√
15.

■

Proposition B.2 Suppose x is a real number. Then(︂√
x
)︂2

= x and
√
x2 = |x|

whenever the expressions are defined.

Example B.5 Solve x2 − 23 = 2.

Solution The first step is to isolate the term with x on one side:

x2 − 23 = 2 implies x2 = 25.

To solve for x, take the square root of each side of the equation:

x2 = 25 implies
√
x2 =

√
25 = 5.

Proposition B.2 says that
√
x2 = |x|, so

|x| = 5 implies x = ±5.

■

Example B.6 Expand and simplify(︂√
2−

√
3
)︂2

.

Solution We will use the expansion formula

(x− y)2 = x2 − 2xy + y2.
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Readers unfamiliar with this formula can also use expansion tech-
niques from algebra.

We have(︂√
2−

√
3
)︂2

=
(︂√

2
)︂2

− 2
(︂√

2
)︂(︂√

3
)︂
+
(︂√

3
)︂2

.

Proposition B.2 tells us
(︂√

2
)︂2

= 2 and
(︂√

3
)︂2

= 3. Furthermore,

Proposition B.1 implies
(︁√

2
)︁ (︁√

3
)︁
=

√
6. It follows that(︂√

2−
√
3
)︂2

= 2− 2
√
6 + 3 = 5− 2

√
6.

■

B.2 n-th Roots

Definition B.3 The n-th root of x, denoted n
√
x is the function

defined by the relationship

y = n
√
x if yn = x

for all x and y when n is odd and for all x ≥ 0 and y ≥ 0 when n
is even.

In the expression n
√
x, the value n is called the “index” of the

radical.

Notice that when the index of the radical is 2, the radical is the
square root function, i.e. 2

√
x =

√
x. The square root function is

the most well known radical. The second most popular radical is
the “cube root” which has an index of 3, i.e. the cube root of x is
3
√
x.

Example B.7 Compute (a) 3
√
8, (b) 4

√
16, and (c) 5

√
−32.

Solution

(a) Since 23 = 8, we conclude that 3
√
8 = 2.

(b) We have 4
√
16 = 2 because 24 = 16 and 2 ≥ 0.
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(c) Due to the fact that (−2)5 = −32, 5
√
−32 = −2.

■

Proposition B.3 Suppose n
√
a and n

√
b are real. Then

n
√
ab = n

√
a · n

√
b.

Furthermore, if b ̸= 0,

n

√︃
a

b
=

n
√
a

n
√
b
.

Example B.8 Simplify (a) 3
√
−54 and (b) 4

√︃
5

81
.

Solution

(a) Notice that −54 = −27 · 2. Thus,

3
√
−54 = 3

√
−27 · 3

√
2 = −3

3
√
2.

(c) We have

4

√︃
5

81
=

4
√
5

4
√
81

=
4
√
5

3
.

■

Proposition B.4 For m and n any two positive integers

m
√
x = mn

√
xn

whenever the expressions are real.

Proposition B.4 allows us to substantially simplify the product of
radicals. Simply rewrite the radicals so that they have the same
index and then use Proposition B.3.

Example B.9 Rewrite √
3 · 3

√
4

as a single radical.
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Solution We will rewrite the square and cube roots as sixth roots:

√
3 =

2·3
√
33 =

6
√
27

and
3
√
4 =

3·2
√
42 =

6
√
16.

Thus,

√
3 · 3

√
4 =

6
√
27 · 6

√
16

=
6
√
27 · 16

=
6
√
432.

■
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Appendix C

Transformations

Let f be an arbitrary function, and consider the graph of y = f(x).

Translations

• y = f(x− h) Shifts the graph right h units.

• y = f(x) + k Shifts the graph up k units.

Vertical Compressions and Stretches

• y = cf(x)
0 < c < 1

Compresses the graph vertically
by a factor of c.

• y = cf(x)
c > 1

Stretches the graph vertically by
a factor of c.
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Horizontal Compressions and Stretches

• y = f(cx)
0 < c < 1

Stretches the graph horizontally
by a factor of 1/c.

• y = f(cx)
c > 1

Compresses the graph horizon-
tally by a factor of 1/c.

Reflections

• y = f(−x) Reflects the graph about the y-
axis.

• y = −f(x) Reflects the graph about the x-
axis.

Being shifted a negative number of units in a direction is the same
as being shifted the absolute value of that number in the opposite
direction. For example, our rules tell us that y = f(x + 2) is the
graph of y = f(x) shifted right −2 units, so the graph of y =
f(x+ 2) is the graph of y = f(x) shifted left 2 units.

x

y

−2 −1 1 2 3

1

•

•

y = f(x)

Example C.1 Graph

y = f(x+ 1) + 2.

Solution Let us consider a few critical numbers of f and their
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corresponding y-values.

x y = f(x)
−2 −1
0 −1
2 1
3 0

Our rules tell us that y = f(x + 1) + 2 is the graph of f shifted
1 unit left and 2 units up. To shift the graph left, we subtract 1
from the x-values in the table. To shift the graph up, we add 2 to
the y-values.

x y = f(x+ 1) + 2
−3 1
−1 1
1 3
2 2

Hence, y = f(x+ 1) + 2 has the following graph.

x

y

−3 −2 −1 1 2 3

1

2

3

•
•

y = f(x+ 1) + 2

■
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x

y

−1 1 2 3

−1

1

y = g(x)

•

Example C.2 Graph
y = 2g(−x).

Solution The first step is to obtain some points on the graph of g.

x y = g(x)
−2 1
2 −1

The graph of y = 2g(−x) is the graph of g reflected about the
y-axis and then stretched vertically by a factor of 2. To reflect
the graph about the y-axis, we negate the x-values. To stretch the
graph vertically by a factor of 2, we multiply the y-values by 2.

x y = 2g(−x)
2 2
−2 −2

We conclude the graph of y = 2g(−x) is as follows.

x

y

−2 1 2

−2

1

2 •
y = 2g(−x)

■
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x

y

−3 −2 −1 1 2 3

−2

−1

1

•

y = h(x)

Example C.3 Graph

y = −h(2x− 4).

Solution Our first step is to construct a table.

x y = h(x)
−3 1
−2 0
0 2
2 0
3 −2

The point (−3, 1) is not included on the graph of h. However,
y = h(x) approaches 1 as x approaches −3. In our final graph, we
will put an open circle at the corresponding point.

To clarify what transformations are being applied to the graph of
h, we will factor a 2 out of 2x− 4:

−h(2x− 4) = −h
(︂
2(x− 2)

)︂
.

So, the graph of h is compressed horizontally by a factor of 1/2,
shifted right by a factor of 2, and then reflected about the x-axis.

y = h(x) −→
horizontal compression⏟ ⏞⏞ ⏟

y = h(2x) −→

right shift⏟ ⏞⏞ ⏟
y = h

(︂
2(x− 2)

)︂
−→

reflection about x-axis⏟ ⏞⏞ ⏟
y = −h

(︂
2(x− 2)

)︂
439



We are ready to modify our table of points, but we are careful to
apply the transformations in the correct order. First, multiply the
x-values by 1/2 to compress the graph horizontally by a factor of
1/2. Then add 2 to the x-values to shift the graph right 2 units.
Then multiply the y-values by −1 to reflect the graph about the
x-axis.

x y = −h(2x− 4)
0.5 −1
1 0
2 −2
3 0
3.5 2

Therefore, the graph of y = −h(2x− 4) is as follows.

x

y

1 2 3

−1

1

2 •
y = −h(2x− 4)

■
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x

y

−2 −1 1 2 3
−1

1

2

3

y = f(x)y = g(x)

Example C.4 Consider the graphs of f and g above.

(a) Write g in terms of f .

(b) Write f in terms of g.

Solution

(a) The graph of g is the graph of f shifted left 3 units, stretched
vertically by a factor of 2, and then shifted down 1 unit.
Thus,

g(x) = 2f(x+ 3)− 1.

(b) The graph of f is the graph of g shifted right 3 units, shifted
up 1 unit, and compressed vertically by a factor of 1/2. Ergo,

f(x) =
1

2

(︂
g(x− 3) + 1

)︂
.

■
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Appendix D

Unit Circle

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

x

y

0◦

30◦

45◦
60◦

90◦

120◦

135◦

150◦

180◦

210◦

225◦

240◦

270◦
300◦

315◦

330◦

0

π
6

π
4

π
3

π
22π

33π
4

5π
6

π

7π
6

5π
4 4π

3 3π
2

5π
3

7π
4

11π
6

(1, 0)

(︂√
3
2 , 1

2

)︂
(︂√

2
2 ,
√
2
2

)︂
(︂

1
2 ,
√
3
2

)︂
(0, 1)

(︂
− 1

2 ,
√
3
2

)︂
(︂
−
√
2
2 ,
√
2
2

)︂
(︂
−
√
3
2 , 1

2

)︂

(−1, 0)

(︂
−
√
3
2 ,− 1

2

)︂
(︂
−
√
2
2 ,−

√
2
2

)︂
(︂
− 1

2 ,−
√
3
2

)︂
(0,−1)

(︂
1
2 ,−

√
3
2

)︂
(︂√

2
2 ,−

√
2
2

)︂
(︂√

3
2 ,− 1

2

)︂
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Appendix E

List of Identities

Reciprocal Identities

cos θ =
1

sec θ

sin θ =
1

csc θ

tan θ =
1

cot θ

sec θ =
1

cos θ

csc θ =
1

sin θ

cot θ =
1

tan θ

Quotient Identities

tan θ =
sin θ

cos θ

cot θ =
cos θ

sin θ

Even and Odd Identities

sin(−θ) = − sin θ

cos(−θ) = cos θ

tan(−θ) = − tan θ

sec(−θ) = sec θ

csc(−θ) = − csc θ

cot(−θ) = − cot θ
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Pythagorean Identities

cos2 θ + sin2 θ = 1

1 + tan2 θ = sec2 θ

1 + cot2 θ = csc2 θ

Sum and Difference Identi-
ties

sin(α±β)=sinα cos β±cosα sin β

cos(α±β)=cosα cos β∓sinα sin β

tan (α± β) =
tanα± tanβ

1∓ tanα tanβ

Cofunction Identities

sin (90◦ − θ) = cos θ

cos (90◦ − θ) = sin θ

tan (90◦ − θ) = cot θ

sec (90◦ − θ) = csc θ

csc (90◦ − θ) = sec θ

cot (90◦ − θ) = tan θ

Double Angle Identities

sin 2θ = 2 sin θ cos θ

cos 2θ =

⎧⎪⎨⎪⎩
cos2 θ − sin2 θ

2 cos2 θ − 1

1− 2 sin2 θ

tan 2θ =
2 tan θ

1− tan2 θ

Half Angle Identities

sin
θ

2
= ±

√︃
1− cos θ

2

cos
θ

2
= ±

√︃
1 + cos θ

2

tan
θ

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±
√︃

1− cos θ

1 + cos θ

1− cos θ

sin θ

sin θ

1 + cos θ

Power Reducing Identities

sin2 θ =
1− cos 2θ

2

cos2 θ =
1 + cos 2θ

2

tan2 θ =
1− cos 2θ

1 + cos 2θ
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Product to Sum and Differ-
ence Identities

cosα cos β= 1
2

(︂
cos(α+β)+cos(α−β)

)︂
sinα sin β= 1

2

(︂
cos(α−β)−cos(α+β)

)︂
sinα cos β= 1

2

(︂
sin(α+β)+sin(α−β)

)︂
cosα sin β= 1

2

(︂
sin(α+β)−sin(α−β)

)︂

Inverse Trigonometric Iden-
tities

arcsinx+ arccosx =
π

2

arcsin (−x) = − arcsinx

arccos (−x) = π − arccosx

arctan (−x) = − arctanx

arcsecx = arccos
1

x

arccscx = arcsin
1

x

arccotx = arctan
1

x

•

•

•
A

B

C

ca

b

Law of Cosines

a2 = b2 + c2 − 2bc cosA

b2 = a2 + c2 − 2ac cosB

c2 = a2 + b2 − 2ab cosC

Law of Sines

sinA

a
=

sinB

b
=

sinC

c

Euler’s Formula

eiθ = cos θ + i sin θ
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Appendix F

Answers

F.1 Angles

1. (a) right

(b) acute

(c) acute

(d) right

(e) straight

(f) right

(g) acute

(h) obtuse

(i) straight

(j) obtuse

2. (a) 90◦

(b) 180◦

(c) 30◦

(d) 60◦

(e) 60◦

(f) 15◦

(g) 37.5◦

(h) 27.5◦

3.

Comp Sup
(a) 70◦ 160◦

(b) 15◦ 105◦

(c) nonsense 88◦

(d) 10◦ 100◦

(e) nonsense nonsense
(f) 67.5◦ 157.5◦

4. (a) x = 8◦, (b) x = 10,
and (c) x = 20◦.

5. (a) y = 100◦, (b) y = 8,
and (c) y = 80.

6. (a) 30◦, (b) t = 48◦, (c)
m∠GHK = 1220◦/9, and
(d) v = 3.

7. (a) w = 45◦, (b) w = 16◦,
(c) w = 3, and (d) w = 10.

8.

45◦

45◦

135◦

135◦

135◦

135◦

45◦

45◦
ℓ

m

n

9. (a) 160◦, (b) 20◦, and (c)
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70◦.

10. (a) y◦ = 130◦ and (b)
x◦ = 50◦.

11. Answers vary.

12. (a) 60◦

(b) 30◦

(c) 60◦

(d) 30◦

(e) 150◦

(f) 60◦

13. Answers vary.

14. (a) 113◦, (b) 68◦, (c) 60◦,
(d) 10◦, (e) 1, and (f) 3 or
4.

15. (a) z = 84, (b) y = 65, and
(c) x = 96.

16. Answers vary.

17. 124◦

18. (a) 50◦, (b) 110◦, and 6.

19.

(a) m∠D < m∠A < m∠B

(b) m∠B < m∠D < m∠C

(c) CD<BC<BD<AB<AD

F.2 Triangles

1. (a) obtuse, (b) right, and
(c) right.

2. (a) right, (b) acute, and
(c) obtuse.

3. (a) x = 60◦, (b) x = 9,
(c) x = −1/2 or x = 5,
and (d) x = 11/10.

4. (a) scalene, (b) isosceles,
and (c) equilateral.

5. The Isosceles Triangle
Theorem (Theorem 1.2)
tells us sides have equal
length if and only if the
angles opposite are con-
gruent.

6. The Triangle Sum Theo-
rem (Theorem 1.1) says
that the sum of the in-

terior angle measures is
180◦. This is impossible if
more than one angle is ob-
tuse.

7. (a) ∠Q ∼= ∠T , ∠R ∼=
∠U , and ∠S ∼= ∠V

(b) QR = TU , RS =
UV , and QS = TV .

8. (a) △VWX ∼= △V Y X
due to ASA Congru-
ence Postulate.

(c) △VWX ∼= △V Y X
due to SSS Congru-
ence Postulate.

(c) △VWX ∼= △V Y X
due to SAS Congru-
ence Postulate.
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9. (a) △ABC ∼= △EDC
due to AAS Con-
gruence Theorem
or ASA Congruence
Postulate.

(b) △ABC ∼= △EDC
due tp SAS Congru-
ence Postulate.

(c) △ABC ∼= △EDC
due to AAS Congru-
ence Theorem.

10. (a) △FGI ∼= △HGI due
to HL Theorem.

(b) △FGI ∼= △HGI due
to SAS Postulate.

(c) △FGI ∼= △HGI due
to SSS Postulate.

(d) △FGI ∼= △HGI due
to AAS Theorem.

11. See section 9.3.3.

12. (a) △ABC ∼ △EBF
due to AA Similarity
Postulate.

(b) △ADE ∼ △BFE
due to AA Similarity
Postulate.

(c) △ADE ∼ △BFE
due to SAS Similarity
Theorem.

(d) △ABC ∼ △EBF
due to SSS similarity
Theorem.

13. (a) 20/3, (b) 2, and (c)
114.

14. (a) m∠DEF = 59◦,
m∠EDF = 31◦,
m∠F = 90◦, DF =
15

√
34/34, and

EF = 9
√
34/34.

(b) m∠GDH = 31◦,
m∠G = 59◦,
m∠H = 90◦, DG =
0.64

√
34, and GH =

1.92.

15. (a) h = 10− 2w

(b) 25− w2

(c) (5− w)
√
5

16. 16x/9.

17. (a) c = 10, d = 18/5, e =
32/5, and f = 24/5.

(b) a = 8, b = 15,
e = 225/17, and f =
120/17.

(c) a = 65/12, b = 13,
c = 169/12, and d =
25/12.

(d) a = 8, b = 15,
d = 64/17, and e =
225/17, or a = 15,
b = 8, d = 225/17,
and e = 64/17.

(e) b = 12, c = 13,
e = 144/13, and f =
60/13.

18. (a) c = 10, (b) a = 8, (c)
b = 60, (d) c = 3

√
13, (e)

a = 2
√
30, and (f) b =

4
√
11.
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19. (a) t = 15, (b) t = 3, and
(c) t = 3.

20. (a) yes, (b) yes, and (c) no.

21. Answers vary.

22. (a) m = 5 and n = 5
√
2.

(b) m =
√
6 and n =

2
√
3.

(c) ℓ = 7 and m = 7.

(d) ℓ =
√
6/2 and m =√

6/2.

23. (a) q = 8 and r = 4
√
3.

(b) p = 2 and q = 4.

(c) p = 8 and r = 8
√
3

(d) q = 2
√
6 and r =

3
√
2.

(e) p = 7
√
15/3 and q =

14
√
15/3.

(f) p =
√
3/12 and r =

1/4.

24. 2
√
3

25. (a) 1:3 and (b) 12
√
3

26. 400π
(︁
3− 2

√
2
)︁

27. 2:1

28. 3
√
3

29. (a) UV = 7
√
3− 7

(b) UV = 5
√
3− 5

(c) TV = 10
√
3

(d) ST = 12 + 4
√
3

30. (a) UV = 10(
√
3− 1)

(b) V T =
√
2 +

√
6

(c) TU = 10(
√
3 + 1)

(d) UV = 20

31. (a) V Y = 5
√
3 + 5

(b) XZ = 10(
√
6−

√
2)

(c) WZ = 2

(d) 18

32. (a) V Y = 6
√
3 + 18

(b) XY = 36(3−
√
3)

(c) XZ = 50(
√
6−

√
2)

(d) 8
√
3 + 24

F.3 Radians, Arc Length, and Rotational
Motion

1. (a) −1080◦

(b) 90◦

(c) −270◦

(d) 337.5◦

(e) −360π◦

(f) 1020◦

2. (a) 270◦

(b) 90◦

(c) 180◦

(d) 195◦

3. (a) −30◦

(b) 120◦

(c) 180◦

(d) −45◦
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4. (a) 60◦

(b) 45◦

(c) 180◦

(d) 30◦

(e) 360◦

(f) 90◦

5. (a)
π

6

(b) π

(c)
π

3

(d)
π

4

(e) 2π

(f)
π

2

6. (a) −216◦

(b) 306◦

(c) −120◦

(d) 216◦

(e) −324◦

(f) 126◦

7. (a)
15π

8

(b) −19π

18

(c)
13π

12

(d) −19π

12

(e)
5π

6

(f) −π

8

8. (a) s = 5π/2, (b) s =
11π/6, (c) θ = 63.75◦, and
(d) r = 270.

9. (a) 8 km

(b) 5 km

(c) 8 km

(d) 3 km

10. (a)
π

5
cm

(b)
5π

6
cm

(c) 3π cm

(d)
5π

24
cm

(e) 24π cm

(f)
5π

8
cm

11. 2
√
3 + 5π/6

12. (a) A =
25π

4

(b) A =
1575π

8

(c) θ =
360◦

7

(d) r = 5

(e) r =
11

√
6

2

(f) θ = 36◦

13. Answers vary.

14. (a) A = 8π/3, (b) θ = 6π,
and (c) r = 7.

15. Four slices.

16. x = 4

17. (a) 60+20π and (b) 600+
100

√
3− 200π.

18. (a) ω =
π

12
rad/sec

(b) ω = 12.5◦/min

(c) ω = 4.3 rev/day

(d) t =
2

17
sec

(e) t =
5

63
min

(f) θ = 4π

19. Answers vary.

20. (a) v =
5π

2
ft/min

(b) r =
75000

π
km/sec

(c) ω = 10 rad/hour

(d) v = 20π in/year

21. Answers vary.
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22. (a) ω = π/30 and v =
π/5

(b) ω = π/360 and v =
π/72

23. (a)
2π

15

(b)
2π

15

(c)
4π

15

(d)
4π

5

24.

Planet Rev/day 106 km/day
Mercury 0.0114 4.15
Venus 0.00444 3.02
Earth 0.00274 2.58
Mars 0.00146 2.09
Jupiter 2.31× 10−4 1.13
Saturn 9.30× 10−5 0.859
Uranus 4.83× 10−5 0.872
Neptune 1.66× 10−5 0.470

25.
5

8
meters

26.
2

3

27. (a) 15.915 and (b) 6.631
revolutions.

F.4 Right Triangle Trigonometry

1. (a) 1.072

(b) 0.292

(c) 0.993

(d) 3.716

(e) 0.105

(f) 3.864

2. (a) 0.342

(b) 0.482

(c) 2.351

(d) 14.101

(e) 1.286

(f) 4.900

3. (a) 0.6

(b) 0.75

(c) 0.8

(d) 0.6

(e) 1.333

(f) 0.8

4. (a) 0.555

(b) 0.667

(c) 0.832

(d) 0.555

(e) 1.5

(f) 0.832

5. (a) b ≈ 10.378
c ≈ 12.518

(b) a ≈ 7.420
c ≈ 13.268

(c) a ≈ 11.184
b ≈ 16.581

(d) b ≈ 3.922
c ≈ 4.731

6. (a) b ≈ 21.452
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c ≈ 28.003

(b) a ≈ 4.195
c ≈ 6.527

(c) a ≈ 65.564
b ≈ 78.137

(d) a ≈ 1.175
c ≈ 1.828

7. (a) (i) 69.136
(ii) 44.250

(b) (i) 262.219
(ii) 78.613

(c) (i) 71.407
(ii) 41.716

8. (a) DF ≈ 1.532

(b) EF ≈ 1.286

(c) GH ≈ 1.286

(d) DG = 2

9. (a) DG ≈ 14.619

(b) DH ≈ 13.737

(c) EF = 3.75

(d) DE ≈ 10.964

10. 309.982

11. 1.407

12. (a)

√
3

2

(b)

√
2

2

(c)

√
3

3

(d)

√
3

2

(e)
1

2

(f)
√
3

13. (a)
1

2

(b) 1

(c)

√
3

2

(d)
√
3

(e)

√
2

2

(f)

√
2

2

14. Answers vary.

15. (a) UV ≈ 6.695

(b) V T ≈ 8.187

(c) TV ≈ 15.150

(d) ST ≈ 11.726

16. (a) UV ≈ 18.033

(b) UV ≈ 51.959

(c) TV ≈ 1.785

(d) SV ≈ 6.093

17. (a) VW ≈ 12.483

(b) V Y ≈ 13.486

(c) The area of △XY Z
is about 20.636.

(d) WZ ≈ 12.000

18. (a) XZ ≈ 21.183

(b) V Y ≈ 26.185

(c) XY ≈ 57.102

(d) The area of △WXZ
is about 50.150.

19. (a)

√
6−

√
2

4

(b)

√
6 +

√
2

4
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(c) 2−
√
3

20. (a) 11.537◦

(b) 67.792◦

(c) 78.690◦

(d) undef

(e) 75.522◦

(f) 18.435◦

21. (a) 0.841

(b) undef

(c) 0.464

(d) undef

(e) 0.795

(f) 1.504

22. (a) 25.377◦

(b) 78.463◦

(c) 52.595◦

(d) 30◦

(e) 45◦

(f) 60◦

23. (a) 0.287

(b) 0.889

(c) 0.662

(d) 0.785

(e) 0.524

(f) 0.524

24. (a) 24.620◦

(b) 30.964◦

(c) 8.213◦

(d) 56.251◦

25. (a) 1.159

(b) 1.134

(c) 0.524

(d) 0.983

26.

(a)

x
1

2

√
2

2

√
3

2

arcsinx 30◦ 45◦ 60◦

arccosx 60◦ 45◦ 30◦

(b)

x
1

2

√
2

2

√
3

2

arcsinx
π

6

π

4

π

3

arccosx
π

3

π

4

π

6

27. (a) α = 45◦, β = 60◦,
and γ = 30◦.

(b) α = π/4, β = π/3
and γ = π/6.

28. (a) m∠A ≈ 65.709◦

(b) m∠ACD ≈ 15.412◦

(c) m∠B ≈ 10.963◦

(d) m∠A ≈ 24.835◦

(e) m∠A ≈ 53.130◦

29. 15.722

30. (a) 0.176 mi or 931 ft.

(b) 1.015 mi or 5361 ft.

31. (a) 42 cm

(b) 11.254 cm

32. (a) 220.676 ft
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(b) 93.262 ft

33. (a) 5.831 ft

(b) 30.968◦

34. (a) 6.974 ft

(b) 5.713 ft

(c) 9.567 ft/sec

35. 2.866◦

36. 44.427◦

37. (a) 347.296 m

(b) 419.550 m

38. 72.471 ft

39. 467.128 m

F.5 Trigonometry of General Angles

1. (a) y-axis

(b) QIV

(c) QI

(d) x-axis

(e) QIV

(f) QII

(g) QII

(h) QIII

2. (a) QI

(b) QII

(c) QIV

(d) QIII

(e) QII

(f) y-axis

(g) QIV

(h) x-axis

3. (a)

(︄√
2

2
,

√
2

2

)︄

(b)

(︄
1

2
,

√
3

2

)︄

(c)

(︄
−
√
3

2
,−1

2

)︄
(d) (1, 0)

(e)

(︄√
2

2
,−

√
2

2

)︄

(f)

(︄
−1

2
,

√
3

2

)︄

(g) (−1, 0)

(h)

(︄√
3

2
,
1

2

)︄

(i)

(︄
−
√
2

2
,

√
2

2

)︄

(j) (0,−1)

4. (a) 30◦

(b) 60◦

(c) 90◦

(d) 225◦

(e) 270◦

(f) 330◦

5. (a)
π

4

(b) 0

(c) π

(d)
4π

3

(e)
5π

6

(f)
7π

4
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6. (a)

√
2

2

(b)

√
3

3

(c) undef.

(d) −1

(e) −1

(f)
2
√
3

3

(g) 0

(h) 0

7. (a)

√
3

2

(b) undef.

(c)
1

2

(d)
√
2

(e) 0

(f)
2
√
3

2

(g)
2
√
3

3

(h) undef.

8. (a) θ = 90◦

(b) θ = 180◦

(c) θ = 45◦ or θ = 225◦

(d) θ = 30◦ or θ = 330◦

(e) θ = 60◦ or θ = 120◦

(f) θ = 120◦ or θ = 300◦

9. (a) φ = π/2 or φ = 3π/2

(b) φ = π/6 or φ = 5π/6

(c) φ = 5π/6 or φ =
11π/6

(d) φ = π/3 or φ = 5π/3

(e) φ = π/4 or φ = 5π/4

(f) φ = 7π/6 or φ =
11π/6

10. (a) QI

(b) QIV

(c) QIII

(d) QII

(e) QIV

(f) QIII

11. (a) Positive x-axis

(b) Positive y-axis

(c) Negative x-axis

(d) Negative y-axis

12. (a) 33◦

(b) 46◦

(c) 29◦

(d) 53◦

(e) 37◦

(f) 21◦

(g) 44◦

(h) 62◦

13. (a)
π

6

(b)
π

12

(c)
π

10

(d)
π

4

(e)
π

8

(f)
π

6

(g)
π

3

(h)
4π

9

(i) 2π − 5

(j) 1

14. (a)
1

2

(b)
1

2

(c) −1

2

(d) −1

2

15. (a)

√
2

2

(b) −
√
2

2

(c) −
√
2

2

(d)

√
2

2

16. (a)
√
3

(b) −
√
3

(c)
√
3

(d) −
√
3
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17. (a) −
√
3

3

(b) 0

(c) −1

2

(d) undef.

(e) −
√
2

(f) −
√
3

3

(g) −2

(h) −1

(i) −
√
2

2

(j) −1

2

18. (a)

√
3

2

(b) −1

(c) −
√
2

(d) 0

(e) −2
√
3

3

(f) −2
√
3

3

(g) −
√
3

2

(h) −
√
3

3

(i) −
√
2

2

(j) −1

2

19. (a) sinα = 3/5, cosα =
4/5, tanα = 3/4,
cscα = 5/3, secα =
5/4, and cotα = 4/3.

(b) sin(360◦−α)=−3/5,
cos(360◦−α)=4/5,
tan(360◦−α)=−3/4,
csc(360◦−α)=−5/3,
sec(360◦−α)=5/4, and
cot(360◦−α)=−4/3.

(c) sin(α+180◦)=−3/5,
cos(α+180◦)=−4/5,
tan(α+180◦)=3/4,
csc(α+180◦)=−5/3,
sec(α+180◦)=−5/4, and
cot(α+180◦)=4/3.

(d) sin(180◦−α)=3/5,
cos(180◦−α)=−4/5,
tan(180◦−α)=−3/4,
csc(180◦−α)=5/3,
sec(180◦−α)=−5/4, and
cot(180◦−α)=−4/3.

20. (a) sinβ = 12/13,
cosβ = 5/13,
tanβ = 12/5,
cscβ = 13/12,
secβ = 13/5,
and cotβ = 5/12.

(b) sin(π − β) = 12/13,
cos(π − β) = −5/13,
tan(π − β) = −12/5,
csc(π − β) = 13/12,
sec(π − β) = −13/5,
and cot(π − β) =
−5/12.

(c) sin(2π−β) = −12/13
cos(2π − β) = 5/13
tan(2π − β) = −12/5
csc(2π−β) = −13/12
sec(2π − β) = 13/5
cot(2π−β) = −5/12.

(d) sin(β + π) = −12/13
cos(β + π) = −5/13
tan(β + π) = 12/5
csc(β + π) = −13/12
sec(β + π) = −13/5
cot(β + π) = 5/12.

21. (a) −15

17

(b) − 8

15

(c)
8

17

(d) −17

8

(e)
17

15

(f) − 8

17

459



22. (a) undef.

(b) −
√
3

3

(c) −
√
2

(d) −1

(e) 1

(f) −1

(g)
√
3

(h)
2
√
3

3

23. (a) 1

(b) 0

(c)
2
√
3

3

(d) −1

(e) −1

2

(f)
√
2

(g) −2
√
3

3

(h) −1

24. Answers vary.

25. (a) D: R and R: [−1, 1]

(b) D: R and R: [−1, 1]

(c) D: {x : x ̸=
π
2 ,−

π
2 ,

3π
2 ,− 3π

2 , . . .}
and R: R

(d) D: {x : x ̸=
0, π,−π, 2π,−2π, . . .}
and R: (−∞,−1] ∪
[1,∞)

(e) D: {x : x ̸=
π
2 ,−

π
2 ,

3π
2 ,− 3π

2 , . . .}
and R: (−∞,−1] ∪
[1,∞).

(f) D: {x : x ̸=
0, π,−π, 2π,−2π, . . .}
and R: R.

26. (a) πn

(b) 2π/3+2πn or 4π/3+
2πn

(c) π/3+πn or 2π/3+πn

(d) π/2 + 2πn

27. (a) π/18 + 2πn/3 or
5π/18 + 2πn/3

(b) 3π/8 + πn/2

(c) 1/3 + 2n, 2/3 + 2n,
4/3+ 2n, or 5/3+ 2n

(d) 2πn/5, π/15+2πn/5,
or π/3 + 2πn/5

28. (a) 120◦ or 200◦

(b) 15◦, 45◦, 135◦, 165◦,
255◦, or 285◦

(c) 90◦ or 270◦

(d) 105◦, 165◦, 285◦, or
345◦

29. (a) π/6 or 11π/6.

(b) 3π/4

(c) 1, 2, 4, or 5

(d) 1/2, 5/2, or 9/2

30. (a) −135◦ or −45◦.

(b) −90◦ or 90◦

(c) −168◦, −24◦ or 120◦

(d) −150◦, −90◦, −30◦,
30◦, 90◦, or 150◦

31. (a) cosα = −3/5,
tanα = 4/3, secα =
−5/3, cscα = −5/4,
and cotα = 3/4.

(b) sinβ = 8/17, cosβ =
15/17, tanβ = 8/15,
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secβ = 17/15, and
cscβ = 17/8.

(c) sin γ = −12/13,
tan γ = −12/5,
sec γ = 13/5, csc γ =
−13/12, and cot γ =
−5/12.

(d) sin θ = 24/25,
cos θ = −7/25,
sec θ = −25/7,
csc θ = 25/24, and
cot θ = −7/24.

(e) sinφ = 0, cosφ =
−1, tanφ = 0,
secφ = −1, and cotφ
is undef..

32. (a) π/6 + 2πn, 5π/6 +
2πn, or 3π/2 + 2πn

(b) π/3 + 2πn or 5π/3 +
2πn

(c) π/4 + 2πn, 3π/4 +
2πn, 5π/4 + 2πn, or
7π/4 + 2πn

33. (a) 2πn/3 or π/3+2πn/3

(b) π/6 + πn/2, π/3 +
πn/2 or 3π/8 + πn/2

(c) 3π/20 + πn/5

34. (a) ii, (b) ii, (c) iii, (d) i,
and (f) iv.

Answers vary for Exercises 35-41.

F.6 Graphing Trigonometric Functions

1.

Amplitude Period Vertical Shift Phase Shift

(a) 3 2 0 0

(b) 1/2 360◦ 1 30◦

(c) 2 1 −π 1

(d) 1 2π 1 π

(e) 2 4π 0 −2π

(f) 3/4 6π −7/4 −π
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2.

(a) f(x) = −3 sin
(︁
π
3x− 2π

3

)︁
(b) g(x) = π cos

(︁
4x+ 2π

3

)︁
− 2

Answers 3-4 omitted to save space.

5. Possible answers:

(a) A = 1, B = 1, and C =
π/2.

(b) A = 1, B = 1, and C =
−π/2.

6.

Period Vertical Shift Phase Shift Asymptotes

(a) 360◦ 0 −90◦ x = 90◦(4n+ 1)

(b) 180/17 3π/2 0 x = 180n/17

(c) 3π 2/π −π x = π(6n+ 1)/2

(d) 20 1 −5/6 x = 5(12n− 1)/6

(e) π 3/4 π x = π(2n+ 3)/2

(f) 2 1 3/π x = 2n+ 3/π

7. Possible answers:

(a) f(x) = 3 tan
(︁
πx
10 − 2π

5

)︁
+1 (b) g(x) = −4 cot

(︁
x
5

)︁
− 3

Answers 8-9 omitted to save space.

10. Possible answers:

(a) A = −1, B = 1, and C =
π/2.

(b) A = −1, B = 1, and C =
π/2.
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11.

Period Vertical Shift Phase Shift Asymptotes

(a) 3 −3 0 x = 3(2n+ 1)/4

(b) 2π π/6 −π/3 x = π(3n− 1)/3

(c) π/2 1 π x = π(n+ 4)/4

(d) 4π 0 −2π x = π(2n− 1)

12. Possible answers:

(a) f(x) = 3 sec
(︁
πx
2

)︁
+ 2 (b) g(x) = − 23π

2 csc
(︁
x
2 − π

2

)︁
−

11π

Answers 13-16 omitted to save space.

17. Possible answers:

(a) y = 2 cos
(︁
π
2x+ π

)︁
− 1

(b) y = −5 sin(12x+ π)

(c) y = cos
(︁
3x− π

2

)︁
+ 2

(d) y = 1
2 sin

(︁
π
4x+ 2π

)︁
− 1

(e) y = 2 tan
(︁
π
2x− π

)︁
+ 1

(f) y = 1
2 cot(x+ 135◦)

(g) y = 3 tan
(︁
3
2x+ π

4

)︁
− 2

(h) y = π cot
(︁
π
8x− π

4

)︁
+ π

(i) y = 3 sec
(︁
π
4x
)︁
+ 3

(j) y = −2π csc
(︁
2x+ π

2

)︁
− π

(k) y = π
2 sec

(︁
2π
3 x+ π

3

)︁
+ π

(l) y = 1
2 csc

(︁
π
2x− π

)︁
− 3

2

Answers 18-19 omitted to save space.

20. (a) 1, (b) 5, (c) 13, (d) 27, and (e) ∞.

F.7 Using Identities
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1. (a)

√
6−

√
2

4

(b) 2−
√
3

(c)

√
6−

√
2

4

(d)
√
3 + 2

(e) −
√
6 +

√
2

4

(f) −
√
6−

√
2

(g) −
√
6−

√
2

(h)
√
3 + 2

2. (a)
√
3− 2

(b) −
√
6 +

√
2

4

(c) −
√
3− 2

(d)

√
2−

√
6

4

(e)
√
6−

√
2

(f)
√
2−

√
6

(g)

√
6 +

√
2

4

(h) −
√
3− 2

3. (a) −
√
3

2

(b) −1

(c) −
√
3

2

(d) −
√
3

(e)
1

2

(f) −
√
3

3

4. (a) −1

(b) −
√
3

2

(c) −
√
3

3

(d)

√
2

2

(e) 1

(f) −
√
3

2

5. (a) π/6 + πn

(b) 3π/4+2πn or 5π/4+
2πn

(c) π/2 + πn

6. (a)
96 + 5

√
17

117

(b) −40 + 12
√
17

117

(c)
96 + 5

√
17

12
√
17− 40

(d)
117

96− 5
√
17

7. (a) −84

85

(b)
13

84

(c) −85

36

(d)
36

77

8. (a) y = 5
√
2 sin

(︂
πx+

π

4

)︂
(b) y = −6 sin

(︂
x+

π

3

)︂
(c) y = −

√
2 sin

(︂
x− π

4

)︂
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(d) y = 2 sin
(︂
2x− π

6

)︂
9. Answer omitted to save

space.

10. (a) 4.331

(b) 0.292

(c) 1.743

(d) 2.145

(e) 0.927

(f) 1.466

11. (a) −0.668

(b) 0.831

(c) 1.556

(d) 0.309

(e) 2.305

(f) −2.190

12. Answers vary.

13. Answers vary.

14. sin 2θ = 240/289
cos 2θ = −161/289
tan 2θ = −240/161
sec 2θ = −289/161
csc 2θ = 289/240
cot 2θ = −161/240

15. sin 2φ = 24/25
cos 2φ = 7/25
tan 2φ = 24/7
sec 2φ = 25/7
csc 2φ = 25/24
cot 2φ = 7/24

16. (a) π/2 + 2πn, 7π/6 +
2πn, 3π/2 + 2πn, or
11π/6 + 2πn

(b) 2πn, π/6 + 2πn,
5π/6 + 2πn, or π +
2πn

(c) π + 2πn

(d) 2πn, π/3 + 2πn,
2π/3 + 2πn, πn,
4π/3+2πn, or 5π/3+
2πn

17. (a) −
√︁

2 +
√
3

2

(b) −2−
√
3

(c)

√︁
2−

√
2

2

(d)
2√︁

2−
√
3

(e) 2−
√
3

(f) − 2√︁
2 +

√
2

(g)

√︂
2−

√︁
2 +

√
3

2

(h) −

√︂
2 +

√︁
2 +

√
2

2

18. (a)

√︁
2 +

√
2

2

(b)
√
3− 2

(c)

√︁
2 +

√
2

2

(d) − 2√︁
2−

√
3

(e) 1 +
√
2

(f)
2√︁

2−
√
3

(g)
2−

√︁
2 +

√
3√︁

2−
√
3
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(h) −

√︂
2−

√︁
2 +

√
2

2

19. sin(θ/2) =
√
2/10

cos(θ/2) = −7
√
2/10

tan(θ/2) = −1/7
sec(θ/2) = −5

√
2/7

csc(θ/2) = 5
√
2

cot(θ/2) = −7

20. sin(φ/2) = 5
√
34/34

cos(φ/2) = 3
√
34/34

tan(φ/2) = 5/3
sec(φ/2) =

√
34/3

csc(φ/2) =
√
34/5

cot(φ/2) = 3/5

21. (a)
1−

√
3

4

(b)

√
6−

√
2

8

(c) −1

4

(d)

√
2− 1

4

22. (a)
1−

√
3

4

(b)

√
6 +

√
2

8

(c)

√
3−

√
2

4

(d) −1

4

23. (a) iv

(b) i

(c) iii

(d) iii

(e) i

(f) ii

(g) ii

(h) i

Answers vary for Exercises 24-33.

F.8 Inverse Trigonometric Functions

1. (a) −1

(b) −5

(c) 1

(d) −5

(e) 2

(f) 5

(g) −3

(h) 0

2. (a) not invertible

(b) not invertible

(c) invertible

(d) not invertible

(e) invertible

(f) not invertible

3. (a) not invertible

(b) not invertible

(c) not invertible

(d) not invertible

(e) invertible

(f) invertible

(g) invertible

(h) invertible
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(i) not invertible

(j) not invertible

(k) not invertible

(l) not invertible

4. Possible Answers:

(a) (−2, 0] or [0, 2]

(b) [0.5, 2] or [2, 3.5]

(d) [0, 3] or [3, 4]

(f) (−2,−1] or [1, 2]

5. Answers vary.

6. (a) invertible

(b) not invertible

(c) not invertible

(d) not invertible

7. (a) 45◦

(b) 60◦

(c) 0

(d) 90◦

(e) 30◦

(f) 30◦

8. (a) 0

(b)
π

4

(c)
π

2

(d)
π

3

(e) 0

(f)
π

3

9. (a) 90◦

(b) −60◦

(c) −60◦

(d) −90◦

(e) 120◦

(f) 30◦

10. (a) −π

4

(b)
π

4

(c) −π

3

(d) undef.

(e) −π

6

(f) undef.

11. (a)
2

5

(b)
2

5

(c)
2

5

(d)
5

2

(e)
2

5

(f)
5

2

12. (a) 25◦

(b) 25◦

(c) 65◦

(d) 65◦

13. (a) 155◦

(b) 25◦

(c) −65◦

(d) 65◦

14. (a)
4π

5

(b)
π

5

(c)
4π

5

(d) −3π

10

(e)
3π

10

(f)
7π

10

15. (a)
π

5

(b) −π

5

(c)
π

5

(d)
3π

10

(e) −3π

10

(f)
7π

10

16. (a) 191.537◦ or 348.463◦.

(b) 44.415◦ or 315.585◦.

(c) 99.462◦ or 279.462◦.

(d) no solution
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(e) 19.471◦, 160.529◦,
199.471◦, or
340.529◦.

17. (a) −0.340

(b) 0.464 or 0.785

(c) −0.142 or −0.785

(d) −0.201

18. (a) 3.481 or 5.943.

(b) 0.464, 0.785, 3.605,
or 3.927.

(c) 2.356, 3.000, 5.498,
or 6.141.

(d) 3.343 or 6.082.

19. (a) 70.529◦

(b) 98.213◦

(c) no solution

(d) 83.621◦ or 99.594◦

20. (a) −70.529◦ or 70.529◦

(b) −98.213◦ or 98.213◦

(c) no solution

(d) −99.594◦, −83.621◦,
83.621◦, or 99.594◦

21. (a) y ≈ 5 sin (2x+ 0.927)

(b) y ≈ −13 sin (x− 1.176)

(c) y ≈ 15 sin (x/2− 0.644)

(d) y ≈ −25 sin (x+ 1.287)

22. sinα = x
cosα =

√
1− x2

tanα =
x
√
1− x2

1− x2

secα =

√
1− x2

1− x2

cscα =
1

x

cotα =

√
1− x2

x

23. sinβ =

√
1 + 4x2

1 + 4x2

cosβ =
2x

√
1 + 4x2

1 + 4x2

tanβ =
1

2x

secβ =

√
1 + 4x2

2x
cscβ =

√
1 + 4x2

cotβ = 2x

24. (a)
2x

√
9− x2

9

(b)
2x2 − 9

9

(c)
2x

√
9− x2

2x2 − 9

(d)
9
√
9− x2

2x(9− x2)

25. (a)

√︁
2x2 − 2x

√
x2 − 1

2x

(b)

√︁
2x2 + 2x

√
x2 − 1

2x

(c) x−
√
x2 − 1

(d) x+
√
x2 − 1

26. (a) −
√
2x2 − x

2x
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(b) −
√
2x2 + x

2x

(c) −
√
4x2 − 1

2x+ 1

(d) −
√
4x2 − 1

2x− 1

27. (a) 20x2+
√︁
(1− 16x2)(1− 25x2)

(b) 5x
√
1−16x2+4x

√
1−25x2

(d)
20x2+

√
(1−16x2)(1−25x2)

5x
√
1−16x2−4x

√
1−25x2

28. (a) π/6 and (b) −π/4.

29. Answers vary.

30. Answers vary.

31. Answers omitted to save
space.

32. Answers omitted to save
space.

33. (a) f(x) = arcsin
x

2
+

π

2

(b) g(x) = 7 arccos(−x)

(c) h(x)=− arctan(x+3)

34. Possible answers:

(a) y = −2 arcsinx

(b) y = − arctan(x+ 1)

(c) y = arccos(−x)

(d) y =
1

3
arccos

(︃
x+

1

2

)︃
(e) y = arctan

(︂x
π

)︂
− π

2

(f) y = arcsin(x−1)+
π

4

F.9 Oblique Triangles

1. (a) SAS

(b) AAS

(c) SSS

(d) SSA

(e) ASA

(f) SAS

(g) SSA

(h) AAS

2. (a) Law of Cosines

(b) Law of Sines

(c) Law of Cosines

(d) Law of Sines

(e) Law of Sines

(f) Law of Cosines

(g) Law of Sines

(h) Law of Sines

3. (a) m∠X ≈ 38.213◦,
m∠Y = 60◦, and
m∠Z ≈ 81.787◦.

(b) m∠X ≈ 0.900◦,
m∠Y ≈ 5.101◦, and
z ≈ 19.986.

(c) m∠X ≈ 48.275◦,
m∠Z ≈ 61.725◦, and
y ≈ 62.953.

(d) m∠X ≈ 34.048◦,
m∠Y ≈ 44.415◦, and
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m∠Z ≈ 101.537◦.

4. (a) m∠Y = 45◦, x ≈
1.726, and z ≈ 3.961.

(b) m∠X = 43◦, y ≈
8.304, and z ≈
10.187.

(c) m∠X = 36◦, x ≈
1.229, and y ≈ 1.977.

(d) m∠Y = 73◦, x ≈
0.875, and y ≈ 4.817.

5. (a) m∠U ≈ 22.793◦,
m∠V ≈ 2.207◦, and
v ≈ 1.094.

(b) No triangle.

(c) No triangle.

(d) m∠T ≈ 7.540◦,
m∠V ≈ 64.460◦, and
t ≈ 5.381.

(e) m∠T ≈ 38.682◦,
m∠U ≈ 51.318◦, and
u ≈ 6.245.

6. (a) yes, (b) no, and (c) yes.

7. (a) m∠E ≈ 85.642◦,
m∠F ≈ 59.358◦,
and e ≈ 17.384 or
m∠E ≈ 24.358◦,
m∠F ≈ 120.642◦,
and e ≈ 7.190.

(b) m∠D ≈ 80.103◦,
m∠F ≈ 34.897◦,
and f ≈ 14.519,
or m∠D ≈ 99.897◦,
m∠F ≈ 15.103◦, and
f ≈ 6.612.

(c) m∠D ≈ 108.137◦,
m∠E ≈ 49.863◦,
and d ≈ 124.305◦,
or m∠D ≈ 27.863◦,
m∠E ≈ 130.137◦,
and d ≈ 61.132.

(d) m∠E ≈ 65.174◦,
m∠F ≈ 55.826◦,
and f = 16.408, or
m∠E ≈ 114.826◦,
m∠F ≈ 6.174◦, and
f ≈ 2.133.

8. (a) 1

(b) 1

(c) 0

(d) 0

(e) 2

(f) 1

(g) 1

(h) 1

9. (a) 1

(b) 0

(c) 0

(d) 0

(e) 1

(f) 1

(g) 2

(h) 1

10. (a) m∠P ≈ 114.026,
m∠R ≈ 114.026◦,
and p ≈ 62.309.

(b) m∠P ≈ 22.686◦,
m∠Q ≈ 62.314◦, and
p ≈ 3.484.

(c) m∠Q ≈ 22.620◦,
m∠R ≈ 90◦, and q =
5.

(d) m∠P ≈ 105.605◦,
m∠R ≈ 51.395◦, p ≈
17.255, or m∠P ≈
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28.395◦, m∠R ≈
128.605◦, and p ≈
8.519.

(e) m∠P ≈ 31.404◦,
m∠R ≈ 40.596◦, and
p ≈ 10.410.

(f) m∠Q ≈ 105.332◦,
m∠R ≈ 29.668◦, and
q ≈ 27.278.

(g) No triangle.

(h) m∠P ≈ 69.572◦,
m∠R ≈ 85.428◦,
and r ≈ 54.249, or
m∠P ≈ 110.428◦,
m∠R ≈ 44.572◦, and
r ≈ 38.194.

(i) No triangle.

11. (a) m∠A ≈ 36.443◦,
m∠B ≈ 33.557◦, and
a ≈ 10.747.

(b) m∠B = 55◦, a ≈
23.303◦, and b ≈
19.383.

(c) m∠B ≈ 66.674◦,
m∠C ≈ 73.326◦,
and c ≈ 31.296, or
m∠B ≈ 113.326◦,
m∠C ≈ 26.674◦, and
c ≈ 14.666.

(d) m∠B ≈ 36.870◦,
m∠C ≈ 53.130◦, and
c = 20.

(e) m∠A = 110◦, b ≈
17.990, and c ≈
30.099.

(f) m∠A ≈ 33.184◦,
m∠C ≈ 124.816◦,
and b ≈ 6.844.

(g) m∠A ≈ 120.549◦,
m∠B ≈ 28.451◦, and
a ≈ 66.884.

(h) m∠A ≈ 35.296◦,
m∠B ≈ 43.897◦, and
m∠C ≈ 100.807◦.

(i) m∠B = 30◦, m∠C =
90◦, and b = 5.

F.10 Area and Perimeter

1. (a) A ≈ 55.902
P ≈ 36.180

(b) A ≈ 197.818
P ≈ 80.055

(c) A ≈ 101.180
P ≈ 49.657

(d) A ≈ 29.790
P ≈ 26.497

(e) A ≈ 494.433
P ≈ 107.387

(f) A ≈ 26.806
P ≈ 27.554

2. (a) A = 17.5
P ≈ 22.268

(b) A ≈ 14.697
P = 18
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(c) A ≈ 72.444
P ≈ 20.066

(d) A ≈ 425.440
P = 182

3. (a) A ≈ 6.495
P = 15

(b) A ≈ 98.740
P ≈ 50.938

(c) A ≈ 2185.333
P ≈ 236.986

(d) A ≈ 5.539
P ≈ 20.243

(e) A ≈ 129.352
P ≈ 57.757

4. Multiply each expression
by 2/(abc).

5. 0.464

6. (a) A ≈ 279.808
P = 60

(b) A ≈ 709.454
P ≈ 94.594

(c) A ≈ 636.396
P ≈ 91.844

(d) A ≈ 51.987
P ≈ 25.994

(e) A = 75
P ≈ 31.058 .

(f) A ≈ 28227.781
P = 600

7. (a) 10
√
3, (b) 20, and (c)

20.

8. (a) 13.858, (b) 15, and (c)
11.481

9. (a) A ≈ 129.904
P ≈ 51.962

(b) A = 200
P ≈ 56.569

(c) A ≈ 237.764
P ≈ 58.779

(d) A ≈ 259.807
P = 60

(e) A ≈ 282.843
P ≈ 61.229

(f) A ≈ 300
P ≈ 62.117

10. A −→ 100π ≈ 314.159
P −→ 20π ≈ 62.832

11. (a) A ≈ 519.615
P ≈ 103.923

(b) A = 400
P = 80

(c) A ≈ 363.271
P ≈ 72.654

(d) A ≈ 346.410
P ≈ 69.282

(e) A ≈ 331.371
P ≈ 66.274

(f) A ≈ 321.539
P ≈ 64.308

12. A → 100π ≈ 314.159
P → 20π ≈ 62.832

13. (a) x = 5
√
3

(b) θ = 90◦
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(c) r ≈ 15.419

(d) x = 16
√
2

(e) θ ≈ 14.362◦

(f) r ≈ 6.527

14. (a) r = 4

(b) A =
27(5π − 3)

4

(c) r ≈ 2.999

(d) A =
100

(︁
2π − 3

√
3
)︁

3

(e) r = 20

(f) A =
361

(︁
π − 2

√
2
)︁

8

15. (a) A ≈ 10.295, (b) x ≈
18.456, and (c) A ≈ 5.118.

16. 12.320

17. 0.424

F.11 Vectors

1. (a) (6, 0)
T

(b) (−4, 2)
T

(c) (0,−8)
T

(d) (−10,−10)
T

2. (a) 30◦

(b) 341.565◦

(c) 120◦

(d) 270◦

(e) 225◦

(f) 0
(g) 201.801◦

(h) 315◦

3. (a) 5

(b) 3
√
5

(c) 13

(d) 1

(e) 17
√
10

(f) 1

4. (a) u = (22, 0)T

(b) u =

(︄√
2

2
,−

√
2

2

)︄T

(c) u = (0,−2.1)T

(d) u =

(︄
−11

10
,
11
√
3

10

)︄T

(e) u = (
√
15,

√
5)

(f) u =
(︁
−5

√
3π,−5

√
π
)︁T

5. Answer omitted to save
space.

6. (a) (−2, 1)
T
, (b) −6j, and

(c) 0.

7. Answer omitted to save
space.

8. Answer omitted to save
space.

9. (a) −2v = (2,−6)
T

3v = (−3, 9)
T
.

(b) v = −2i− 2j
3v = 3i+ 3j.

(c) −2v = (6, 4)
T

3v = (−9,−6)
T
.

10. (a) (i) −78

5
i+ j,

(ii) 3i− 15j
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(iii) −336

5
i+ 63j.

(b) (i) 5i+ 7j

(ii) −15i− 15j

(iii) 3j

(c) (i) 15i− 7j

(ii) 10j

(iii)
228

5
i− 93j

11. (a)
−→
BA

(b)
−→
AC

(c)
−→
DB

(d)
−→
BD

12. Answers vary.

13. (a)

(︃
− 5

13
,−12

13

)︃T

(b)
7
√
2

10
i+

√
2

10
j

(c)

(︃
40

41
,− 9

41

)︃T

(d)
3

5
i− 4

5
j

(e)

(︄√
69

9
,
2
√
3

9

)︄T

(f) −
√
2

2
i+

√
2

2
j

14. (a) u =

(︄
−5

√
3

2
,
5

2

)︄T

(b) u =
3

10
i− 2

5
j

(c) u = (−12,−5)
T

(d) u = −i− j

(e) u = (9, 12)
T

15. (a)
(︁
10, 10

√
3
)︁T

(b) (−6, 6)T

(c)
(︁
−50,−50

√
3
)︁T

(d)

(︄
15

2
,−5

√
3

2

)︄T

16. (a) S45◦E, (b) N60◦W ,
(c) S45◦W , (d) N30◦E,
(e) about S32.471◦E, and
(f) about N39.232◦E.

17. About (a) N33.690◦E,
(b) N11.310◦E, (c)
N25.017◦W , (d)
S33.690◦W , (e) S11.310◦W ,
and (f) S25.017◦E.

18. The distance between
ships A and B is 42.321
kilometers and the bear-
ing from Ship A to Ship B
is N52.316◦E.

19. N48.153◦E

20. (a) 49.378 kilometers per
hour and (b) S4.277◦W .

21. (a) 841.828 kilometers per
hour and (b) N54.610◦E.

22. (a) 100 N, (b) 196.2 N, (c)
1.02 kg, (d) 49.1 N, and (e)
8.14 kg.
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23. (a) 100 N, (b) 98.1 N, (c)
2.55 kg, (d) 19.6 N, and (e)
2.55 kg.

24. (a) a ≈ 8.50 m/s2, (b) θ ≈
45.0◦, (c) a ≈ 3.36 m/s2,
and (d) θ ≈ 24.0◦.

25. Answers vary.

26. (a) About 508 N in the
left cable and 718 N
in the right cable.

(b) About 498 N in the
left cable and about
763 N in the right.

(c) α ≈ 27.1◦.

(d) About 868 N.

27. The mass of the box is
about 108 kilograms.

28. (a) α = 60◦ and β = 30◦.

(b) α ≈ 30.0◦ and β ≈
14.5◦.

29. (a) 50 kilograms, (b)
48.6◦, (c) about 35.6 kilo-
grams, and (d) 29.6◦.

30. (a) −9

(b) 13

(c) −18

(d) 18

31. (a) 0

(b) 90

(c) −15

2

(d) 45

32. Answers vary.

33. (a) −1

(b) 35
√
3

2

(c) − 15
√
2

2

(d) 0

34. (a) 0
(b) 180◦

(c) 125.538◦

(d) 60◦

(e) 63.435◦

(f) 104.250◦

35. (a) parallel, (b) neither,
(c) parallel, (d) orthogo-
nal, (e) neither, and (f) or-
thogonal.

36. Possible answers:

(a) 5i+ 3j
−5i− 3j

(b) (−7, 2)T

(7,−2)T

(c) i− j
−i+ j

(d)
(︂
cos 112.5◦, sin 112.5◦

)︂T
(︂
cos 67.5◦,− sin 67.5◦

)︂T
37. (a)

√
5/5, (b) 3

√
13/13,

and (c) 0.

38. (a)

(︃
1

5
,−2

5

)︃T

(b)
9

13
i+

6

13
j

(c) 0

39. (a) (−12, 9)T

(b)
14

5
i− 7

5
j

(c) (−27,−36)
T
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(d) i+
√
3j

40. (a) 5 J

(b) −17 J

(c) 14 J

(d) 0

(e) 4 J

(f)
13
√
π

6
J

41. (a) 36 J

(b) 50
√
2 J

(c) 0

(d) −13
√
2

2
J

42. About (a) 2730 J, (b) 1470
J, and (c) 2770 J.

F.12 Complex Numbers

1. (a) 8 + 7i

(b) −9−46i

(c) 75 + 11i

(d) 5 + 3i

2. (a) 9/2

(b) 26− 19i

(c) 9 + 5i

(d) −1 + i

3. (a) −23 + 145i

(b) 42 + 236i

(c) 42 + 236i

(d) −213− 233i

(e) −213− 233i

4. (a) −3

2
− i

(b) −3

2
− i

(c)
1

2

(d) 4i

(e) 11− 8i

(f) 11− 8i

5. (a)
8

25
+

6

25
i

(b)
5

34
− 3

34
i

(c)
22

25
+
54

25
i

(d)
87

68
+

9

68
i

6. (a) 4

(b) 2

(c)
5

2

(d) 3

(e) 29

(f) 4

7. (a) 3

(b) 11

(c)
√
2

(d) 25

(e) 2

(f) 1

(g) 3
√
5

(h)
3
√
5

2

8. (a) 2.6

(b)
√
5

(c) 6.5

(d)
5
√
5

2

(e)
13
√
5

25

(f)
13

29
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9. (a)
1

10
+

3

10
i

(b) 1

(c) −8− 6i

(d) −26+18i

10. (a)
3

25
− 4

25
i

(b)
2

5
− 1

5
i

(c) 1

(d) 3 + 4i

11. (a) −i

(b) 2i

(c) −1

(d) 17

12. (a) −5− 6i

(b) −2− 56i

(c) − 83

145
+

19

145
i

13. (a) 1 + i

(b) −2

(c) −5 + 5i

14.

Real Imaginary
Part Part

(a) 2 −3
(b) 0 4
(c) −7 0
(d) 1/3 2/3

15. Answer omitted to save
space.

16. (a) −2

(b) 2 + 2i

(c) 2− 3i

(d) −5 + i

(e) 0

17. (a) 5

(b) 13

(c) 1

(d)
√
2

(e) 7

(f)

√
5

2

Answers very for Exercises 18-
20.

21. (a) 6e5πi/3

(b) 2
√
5

7 e5πi/6

(c) e3πi/2

(d) 5
√
2eπi/4

(e)
√
6e5πi/4

(f) 2eπi

(g) 42eπi/2

22. (a)
√
15e−πi/2

(b) 2e3πi/4

(c) e−5πi/6

(d)
√
3e−πi/6

(e) π
2 e

πi/3

(f) 7eπi

(g)
√
2eπi/4

23. (a)
π

2
+ i

π
√
3

2

(b) 2
√
3− 2i

(c)

√
6

2
− i

3
√
2

2

(d) −3
√
2

2
+ i

3
√
2

2
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(e) −
√
2

2
− i

√
6

2

(f) 1

(g)
π

3
+ i

π

3

(h) −6
√
3 + 6i

(i) 3i

(j) −
√
15

2
+ i

√
5

2

24. (a) −3

2
i

(b) −3
√
3 + 3i

(c) −27i

(d) 16 + 16i
√
3

25. (a)
3
√
6

4
+ i

3
√
2

4

(b)
3i
√
2

4

(c) −27

8

(d) −
√
6

16
+ i

√
2

16

26. (a) −4−4i

(b)
i

8

(c) − 1

64

(d) 8− 8i

27. (a) −8 + 8i
√
3

(b)
1

64
− i

√
3

64

(c)
1

256
+ i

√
3

256

(d) 64

Answers vary for Exercises 28-
30.

31.

(a)

√
2

2
+ i

√
2

2
and −

√
2

2
− i

√
2

2
.

(b) 5, −5

2
+ i

5
√
3

2
, and −5

2
− i

5
√
3

2
.

(c)

√
2

2
+ i

√
2

2
, −

√
2

2
+ i

√
2

2
, −

√
2

2
− i

√
2

2
, and

√
2

2
− i

√
2

2
.

(d) 2, 1 + i
√
3, −1 + i

√
3, −2, −1− i

√
3, and 1− i

√
3.

32.

(a)

√
3

2
+

1

2
i, i, −

√
3

2
+

1

2
i, −

√
3

2
− 1

2
i, −i, and

√
3

2
− 1

2
i.

(b)

√
2

2
+i

√
2

2
,
−
√︁
2 +

√
3 + i

√︁
2−

√
3

2
, and

√︁
2−

√
3− i

√︁
2 +

√
3

2
.

478



(c)
4
√
2

2

(︂√︁
2−

√
3 + i

√︁
2 +

√
3
)︂
,

4
√
2

2

(︂
−
√︁
2 +

√
3 + i

√︁
2−

√
3
)︂
,

4
√
2

2

(︂
−
√︁

2−
√
3− i

√︁
2 +

√
3
)︂
, and

4
√
2

2

(︂√︁
2 +

√
3− i

√︁
2−

√
3
)︂
.

(d)
√
2+ i

√
2, −

√︁
2−

√
3+ i

√︁
2 +

√
3, −

√︁
2 +

√
3+ i

√︁
2−

√
3,

−
√
2−i

√
2,
√︁
2−

√
3−i

√︁
2 +

√
3, and

√︁
2 +

√
3−i

√︁
2−

√
3.

33.

(a) 1 and −1.

(b) 1, −1

2
+ i

√
3

2
, and −1

2
− i

√
3

2
.

(c) 1, i, −1, and −i.

34. 1 35. 0

F.13 Polar Coordinates and Equations

1. Answer omitted to save
space.

2. Answer omitted to save
space.

3. Possible answers:

(a)

(︃
3

2
, 0

)︃
(b)

(︂
2,

π

4

)︂
(c)

(︃
1

2
,
π

2

)︃
(d)

(︃
5

2
,
9π

8

)︃
(e)

(︃
3

2
,
7π

4

)︃
(f)

(︃
2,

5π

8

)︃

(g)

(︃
3,

3π

2

)︃
(h) (3, π)

4. Possible answers:

(a) (i) (1, 690◦)

(ii) (1,−30◦)

(iii) (−1, 150◦)

(iv) (−1,−210◦)

(b) (i)

(︃
1

2
, 2π

)︃

(ii)

(︃
1

2
,−2π

)︃

(iii)

(︃
−1

2
, π

)︃
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(iv)

(︃
−1

2
,−π

)︃
(c) (i) (5, 495◦)

(ii) (5,−225◦)

(iii) (−5, 315◦)
(iv) (−5,−45◦)

(d) (i)

(︃
2.5,

10π

3

)︃
(ii)

(︃
2.5,−2π

3

)︃
(iii)

(︂
−2.5,

π

3

)︂
(iv)

(︃
−2.5,−5π

3

)︃
(e) (i) (2, 195◦)

(ii) (2,−165◦)

(iii) (−2, 15◦)

(iv) (−2,−705◦)

(f) (i)

(︃
1,

3π

2

)︃
(ii)

(︃
1,−5π

2

)︃
(iii)

(︂
−1,

π

2

)︂
(iv)

(︃
−1,−3π

2

)︃
5. (a) (0,−3)

(b)

(︄
−3

√
2

2
,−

√
6

2

)︄
(c) (0,−2)

(d) (−7, 7)

(e) (−2,−2
√
3)

(f)

(︄
−3

√
2

4
,
3
√
2

4

)︄

6. (a)

(︃
2
√
2,

3π

4

)︃
(b)

(︃√
3,

4π

3

)︃
(c)

(︂
4,

π

2

)︂
(d)

(︃
2
√
3,

11π

6

)︃
(e) (1, π)

(f)
(︂
6,

π

4

)︂
7. (a) r = 1

(b) r = −4 sin θ

(c) r = 5 csc θ

(d) θ =
π

4

(e) r = − sec θ tan θ

2

(f) r =
1

sin θ − cos θ

(g) r = 6 cos θ − 2 sin θ

(h) r2 = 2 csc 2θ

(i) r2 = − sec 2θ

8. (a) x2 + y2 = 4

(b) (x− 1)2 + y2 = 1

(c) y = −x
√
3

3
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(d) (x2 + y2)3/2 = y

(e) tan
√︁

x2 + y2 =
y

x

(f) x = −3

(g) (x2 + y2)2 = 2xy

(h) y =
x2 − 1

2

(i) x2 − y2 = 1

Answers vary for Exercises 9-11.

12. (a) 10, (b) 15, and (c)
2
√
3.

13. Answer omitted to save
space.

14. (a) θ = 15◦, (b) r =
− sec θ, and (c) r = 2 csc θ.

15. Answer omitted to save
space.

16. Answer omitted to save
space.

17. (a) Symmetric about the
polar axis.

(b) Symmetric about the
pole.

(c) Symmetric about θ =
π/2 and the polar
axis.

(d) Symmetric about θ =
π/2.

(e) Symmetric about the
polar axis.

(f) Symmetric about θ =
π/2.

(g) Symmetric about θ =
π/2 and the pole.

(h) Contains all symmet-
ric (note r = 3 ⇔ r =
−3).

18. (a) 20

(b) 7

(c) 3

(d) 44

19. Answer omitted to save
space.

20. (a) (i) circle and (ii) r =
1.5 cos θ.

(b) (i) dimpled limaçon
and (ii) r = 1.5 +
sin θ.

(c) (i) inner loop limaçon
and (ii) r = 1 −
2 cos θ.

(d) (i) rose curve and (ii)
−2 cos 3θ.

(e) (i) circle and (ii) r =
−2 sin θ.

(f) (i) cardioid and (ii)
r = 1 + sin θ.

(g) (i) circle and (ii) r =
1.5.

(h) (i) rose curve and (ii)
r = 1.5 cos 4θ.

(i) (i) rose curve and (ii)
r = 2.5 sin 5θ.

(j) (i) lemniscate and (ii)
r2 = 2.25 sin 2θ.
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(k) (i) convex lemiçon
and (ii) r = 2+cos θ.

(l) (i) rose curve and (ii)
r = sin 2θ.

21. Answer omitted to save
space.

22. Answer omitted to save
space.
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Glossary

Acute angle An angle of measure strictly between 0 and 90◦. In
other words, ∠W is acute if and only if 0 < m∠W < 90◦.

Acute triangle All three interior angles are acute.

Adjacent angles Two angles are adjacent if and only if

• they share a common vertex,

• they share a common side, and

• they are non-overlapping.

Altitude of a triangle The shortest segment which extends from
a vertex of a triangle to the line containing its opposite side.
Because the altitude is the shortest segment, it must be per-
pendicular to the line which contains the side opposite the
vertex.

Amplitude The amplitude of a perodic function f is

max{f(x)} −min{f(x)}
2

.

Angle The figure formed by two rays which meet at a common
endpoint.

Angle bisector A line, line segment, or ray, which divides an
angle into two adjacent angles of the same measure.

Angle measure A number which quantifies how much an angle
opens up. Angle measures are obtained from protractors, and
their units are usually either degrees, radians, or revolutions.
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Angle of depression An angle formed by a horizontal ray and
another ray below the horizontal.

Angle of elevation An angle formed by a horizontal ray and an-
other ray above the horizontal.

Angular velocity When an object rotates about a point, the an-
gular velocity is the rate of change of θ with respect to time,
where θ is the central angle subtended by the initial and final
position of the object.

Apothem A line segment from the center of a regular n-gon to
the midpoint of one of its sides. An apothem is always per-
pendicular to the side it intersects.

Arc A portion of a circle.

Arc cosecant The arc cosecant of x, denoted arccscx, is the func-
tion defined by the relationship

y = arccscx if csc y = x

for x ≤ −1 or 1 ≤ x and −π/2 ≤ y < 0 or 0 < y ≤ π/2.

Arc cosine The arc cosine of x, denoted arccosx, is the function
defined by the relationship

y = arccosx if cos y = x

for −1 ≤ x ≤ 1 and 0 ≤ y ≤ π.

Arc cotangent The arc cotangent of x, denoted arccotx, is the
function defined by the relationship

y = arccotx if cot y = x

for x any real number and −π/2 < y < 0 or 0 < y ≤ π/2.

Arc secant The arc secant of x, denoted arcsecx, is the function
defined by the relationship

y = arcsecx if sec y = x

for x ≤ −1 or 1 ≤ x and 0 ≤ y < π/2 or π/2 < y ≤ π.
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Arc sine The arc sine of x, denoted arcsinx, is the function de-
fined by the relationship

y = arcsinx if sin y = x

for −1 ≤ x ≤ 1 and −π/2 ≤ y ≤ π/2.

Arc tangent The arc tangent of x, denoted arctanx, is the func-
tion defined by the relationship

y = arctanx if tan y = x

where x is any real number and −π/2 < y < π/2.

Argument Consider the complex number z ̸= 0. An argument of
z is a value of θ which makes the equation z = reiθ true for
some real number r > 0.

Chord A line segment connecting two points on a circle.

Circumradius A line segment between the center of a regular
n-gon and one of its vertices.

Complementary angles Two acute angles whose measures sum
to 90◦.

Complex conjugare The complex conjugate of z = a+ bi is

z = a− bi.

Complex numbers The set

= {a+ bi : a, b ∈ R}.

Component form Suppose

v =

(︃
a
b

)︃
.

Then component form of v is

ai+ bj.
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Congruent angles Two angles of the same measure. If ∠X and
∠Y are congruent, we write ∠X ∼= ∠Y . So,

m∠X = m∠Y if and only if ∠X ∼= ∠Y.

Congruent triangles There is a correspondence between the ver-
tices of two triangles such that corresponding angles are con-
gruent and corresponding sides have the same length. If
△ABC is congruent to △XY Z, we write △ABC ∼= △XY Z.

Coordinate vector Suppose v has a position vector whose tip is
at (a, b). Then the coordinate vector of v is(︃

a
b

)︃
.

Coplanar Two or more geometric objects are coplanar if they are
both contained within some particular plane.

Cosecant Suppose θ is an angle in standard position whose ter-
minal side intersects the unit circle at the point (x, y). Then
define cosecant of θ to be the function such that csc θ = 1/y.

Cosine Suppose θ is an angle in standard position whose terminal
side intersects the unit circle at the point (x, y). Then define
cosine of θ to be the function such that cos θ = x.

Cotangent Suppose θ is an angle in standard position whose ter-
minal side intersects the unit circle at the point (x, y). Then
define cotangent of θ to be the function such that cot θ = x/y.

Denominator The value or function b in the expression a/b.

Directed angle Consider rays
−→
OX and

−→
OY . A rotation of

−→
OX

aboutO which terminates at
−→
OY is the directed angle ∠XOY .

Displacement vector The vector which represents the path trav-
eled by an object when calculating work.

Domain The domain of a function f is the set of x such that f(x)
is defined. In other words, the domain of a function is the set
of inputs of the function.
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Dot product Suppose

u =

(︃
u1

u2

)︃
and v =

(︃
v1
v2

)︃
.

The dot product of u and v is

u • v = u1v1 + u2v2.

Equiangular triangle All the interior angles are congruent.

Equilateral triangle All sides have the same length.

Even function The function f is even if

f(−x) = f(x).

Gravitational force The force exerted by gravity, denoted by G.
Sometimes subscripts are used to indicate different gravita-
tional forces. We assume that objects are “close” to earth.
In which case, the gravitational force exerted on an object of
mass m is mg, where g ≈ 9.81 meters per square second.

Hypotenuse The side of a right triangle opposite the right angle.
The hypotenuse is always the longest side of the triangle.

i Define i to be a solution of x2 + 1 = 0.

Identity A statement of equality between mathematical expres-
sions, which holds for all values of the variables contained
within the domains of each expression.

Imaginary part of a complex number The imaginary part of
the complex number z = a+ bi is the real number b.

Initial side of an angle Within the context of a directed angle,
the initial side is the side where the angle begins its rotation.

Interior angle An angle formed within a polygon by a vertex and
its adjacent sides.
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Inverse function The function g is the inverse of f if

f
(︂
g(x)

)︂
= x and g

(︂
f(x)

)︂
= x.

Irrational number When a real number cannot be written as a
ratio of integers, we way that it is an irrational number.

Isosceles triangle A triangle with two or more sides of the same
length.

Leg Either of the shorter two sides of a right triangle. That is, a
side of a right triangle which is not the hypotenuse.

Line The geometric figure contained within a plane which extends
infinity in both directions and does not bend.

Line segment The portion of a line contained between two points.

Linear pair Adjacent angles such that the rays not shared be-
tween the two angles form a straight angle.

Magnitude The magnitude of a vector v is defined to be the
length of v. It is denoted |v|.

Modulus The modulus of a complex number z = a+ bi is

|z| =
√︁
a2 + b2.

n-th root The n-th root of x, denoted n
√
x is the function defined

by the relationship

y = n
√
x if yn = x

for all x and y when n is odd and for all x ≥ 0 and y ≥ 0
when n is even.

Normal force The force perpendicular to a surface, denoted by
N . A subscript is sometimes needed when there are multiple
normal forces.

Numerator The value or function a in the expression a/b.
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Oblique triangle No interior angle is right. In other words, a
triangle that is either acute or obtuse.

Obtuse angle An angle of measure strictly between 90◦ and 180◦.
That is, ∠Y is obtuse if and only if 90◦ < m∠Y < 180◦.

Obtuse triangle Contains one obtuse interior angle.

Odd function The function f is odd if

f(−x) = −f(x).

One-to-one A function f is one-to-one if

f(u) = f(v) implies u = v.

Orthogonal The vectors u and v are orthogonal if

u • v = 0.

Parallel lines Coplanar lines which never intersect.

Parallel vectors The vectors u and v are parallel if there is a
nonzero scalar c such that

u = cv.

Parent function The function considered to be the most basic
within a family of functions. For example, f(x) = x2 is the
parent function of functions of the form f(x) = a(x−h)2+k.

Periodic The function f is periodic with period p > 0 if p is the
smallest number such that

f(x+ p) = f(x)

for all values of x within the domain.

Perpendicular Two geometric objects are perpendicular if they
intersect at a right angle.

Phase shift How much the principal period of a periodic function
is shifted left or right relative to its parent function.
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Polar form The polar form of the complex number z ̸= 0 is

z = reiθ,

where r = |z| and θ is an argument of z.

Pole The central point of the polar coordinate system. We usually
denote the point by the letter O.

Polar axis On the polar coordinate system, the polar axis is the
horizontal ray with endpoint the pole. By convention, the
polar axis points right.

Polygon A closed geometric figure that is bounded by line seg-
ments.

Position vector The representation of a vector which has its tail
at the origin.

Principal period The period of a periodic function considered
to be most fundamental, e.g. the principal period of f(x) =
sinx is usually considered to be the interval [0, 2π).

Pythagorean Triple An ordered triplet of positive integers (a, b, c)
such that

a2 + b2 = c2.

Radian measure Place a circle of radius 1 around ∠A such that
the center of the circle is the point A. The length of the arc
which subtends ∠A is the radian measure of ∠A.

Range The range of a function f is the set of y such that y = f(x)
for some x. In other words, the range is the set of outputs of
a function.

Ratio The ratio of a and b is a/b.

Rational equation A rational equation is an equation which con-
tains one or more rational expressions.

Rational expression A ratio of polynomials. In other words, a
rational expression is any expression of the form

amxm + am−1x
m−1 + . . .+ a1x+ a0

bnxn + bn−1xn−1 + . . .+ b1x+ b0
,
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where am, am−1, . . . , a0, bn, bn−1, . . . , and b0 are constants.

Rational number A number is rational if it can be written in the
form

a

b
,

where a = 0, 1,−1, 2,−2, . . . and b = 1,−1, 2,−2, . . ..

Ray The portion of a line which has an endpoint and extends
infinitely in a direction.

Real part of a complex number The real part of the complex
number z = a+ bi is the real number a.

Reference angle Consider the directed angle θ in standard posi-
tion. Suppose the terminal side of θ lies within a quadrant.
The reference angle θR is the acute angle that shares the ter-
minal side of θ and whose other side is either the positive or
negative x-axis.

Regular All interior angles are congruent and all sides have equal
length.

Right angle An angle of measure exactly 90◦ is a right angle.
That is, ∠X is right if and only if m∠X = 90◦.

Right triangle One interior angle of the triangle is right.

Root of unity An n-th root of unit is a solution of

zn = 1.

Scalars Real numbers, most notably within the context of vectors.

Scalene triangle All of the sides of the triangle have different
lengths.

Secant Suppose θ is an angle in standard position whose terminal
side intersects the unit circle at (x, y). Then define secant to
be the function such that sec θ = 1/x.

Sector of a circle A region bounded between two radii and their
intercepted arc.

Segment bisector A line, line segment, or ray, which divides a
line segment into two parts of equal length.
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Segment of a circle The region bounded between a chord and
the arc with the same endpoints.

Similar triangles There is a correspondence between the vertices
such that corresponding angles are congruent and the ratio of
corresponding side lengths is fixed. To indicate that △ABC
is similar to △XY Z we write △ABC ∼ △XY Z.

Simple A polygon whose boundary does not intersect itself. We
assume all polygons are simple within this text.

Sine Suppose θ is an angle in standard position whose terminal
side intersects the unit circle at (x, y). Then define sine to be
the function such that sin θ = y.

Solve a triangle To find all of the triangle’s side lengths and in-
terior angle measures.

Square root The square root of x, denoted
√
x, is the function

defined by the relationship

y =
√
x if y2 = x

for x ≥ 0 and y ≥ 0.

Standard form The standard form of a complex number is

a+ bi,

where a and b are real numbers.

Standard position angle The initial side of the angle lies on the
positive x-axis.

Straight angle An angle of measure exactly 180◦. That is, ∠Z is
straight if and only if m∠Z = 180◦.

Supplementary angles Two angles whose measures sum to 180◦.

Tangent Suppose θ is an angle in standard position whose ter-
minal side intersects the unit circle at (x, y). Then define
tangent to be the function such that tan θ = y/x. It is useful
to note

tan θ =
sin θ

cos θ
,

wherever the expressions are defined.
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Tension The force exerted by a cable. Tension travels along the
cable, and is obtain via the tightness of the cable. We de-
note tension by T . When there are multiple tension vectors,
subscripts are used.

Terminal side of an angle For a directed angle, the terminal
side of the angle is the side where the angle ends its rota-
tion about the angle’s vertex.

Transversal A line which intersects two coplanar lines at distinct
points.

Unit circle The set of points (x, y) such that x2 + y2 = 1.

Unit vector A vector of magnitude 1.

Vector A nonzero vector is a mathematical expression that shows
magnitude and direction.

Vertex of a polygon A common endpoint of two sides of the
polygon’s boundary.

Vertex of an angle The common endpoint shared between the
two rays that form an angle.

Vertical angles The angles on the opposite sides of intersecting
lines.

Vertical asymptote The function f has a vertical asymptote of
x = a if f(x) goes to ±∞ as x goes to a from the left or
the right. Within sketches of graphs, asymptotes are usually
denoted by dashed lines.

Work The work done by a force F which moves an object from
point P to point Q is

W = F •
−→
PQ .

Zero vector The vector which has no magnitude or direction. De-
note it by 0. Its coordinate vector is

0 =

(︃
0
0

)︃
.
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